Contents	SIEMENS			
Energy efficiency in building automation and control, overview				
Class A applications				
Application architecture for class A applications				
Benchmarking overview				
Benchmarking AirOptiControl and Economizer tx2				
Energy efficient applications: Heating and refrigeration				
Energy efficient applications: Bentilation and air conditioning				
Literature				
page 3/15 Rev 3, 28-Jan-2013 Benedikt Schumacher, 3043	Alle Rechte vorbehalten. Infrastructure & Cities / BT			

Building simulation, background knowledge

Application positioning

-> BAU strategy

AirOptiControl: Belimo Fan Optimizer, Bauer optimization

-> Differences, coverage, experiences

Economizer TX2: Storck (VCS) -> Germany only

Applications manual heating and refrigeration supply -> Overview of functions, for example, TABS, PredCtl

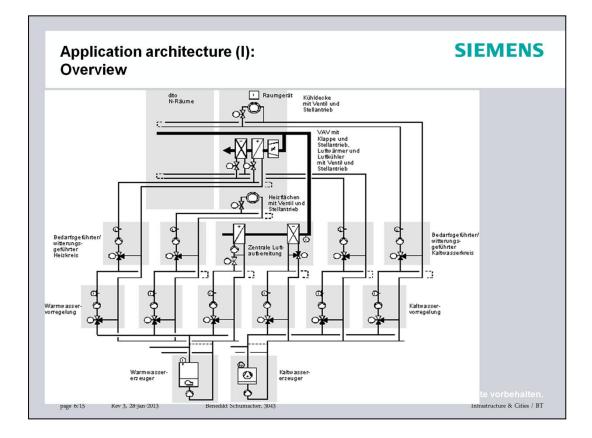
Applications manual ventilation and air conditioning -> Overview of functions, for example, AirOptiControl (manual presently being completed)

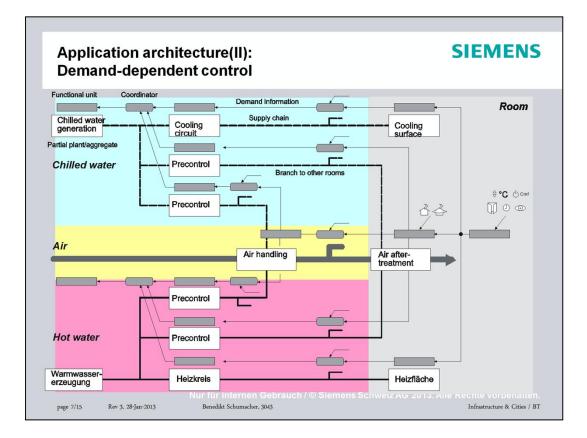
Applications manual ventilation and air conditioning

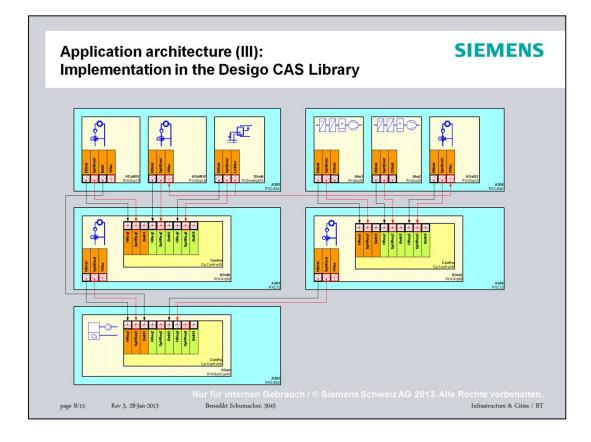
p.8: last section (hope this statement can be proven)

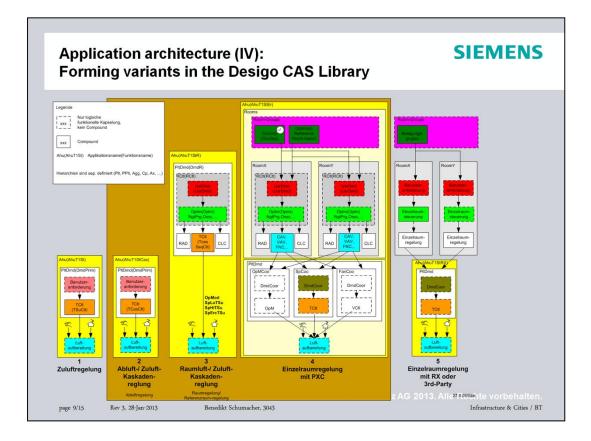
p.9: Building automation influence on energy efficiency in four fields: plant control with efficient algorithms / monitoring / support user behaviour with appropriate HMIs / maintain room quality with least energy consumption

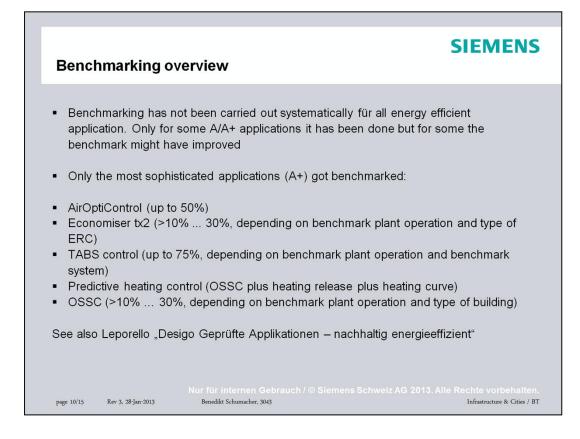
p.10: Term: energy efficiency


- p.11: Standards, directives
- P13: Principles of energy-efficient operation
- p.14: Requirments for energy-efficient control


p.15: plant structure


- p.20: Demand control
- p.28: conventions


SIEMENS


Class A applications	SIEMENS
EN15232	Implementation in Desigo
As per EN15232, class A applications operate a plant based on demand.	The Desigo CAS Library supports demand-oriented plant operation:
	 Applications architecture with coordinator for demand-dependent control
	 Implementation of the application architecture in the Desigo CAS Library Variants in the Desigo CAS Library support class A applications
	Caution: Not all variants are class A. Some are solutions below that level, for example, supporting scheduled operation.
	ernen Gebrauch / Siemens Schweiz AG 2013. Alle Rechte vorbehalten. Infrastructure & Cities / BT

Benchmarking: Be careful about what is being compared

AirOptiControl

Air volume optimization -> Room shut down, energy efficiency control mode (high/low supply air temperatures, humidity, AQ)

Pressure optimization/coordination -> Damper position

Temperature optimization/coordination

(humidity optimization/coordination

Air quality optimization/coordination

Bauer optimization

Product at BAU since approximately, mid-2012, no longer at CPS

Reduction to air volume

•High, or low supply air temperatures

•Ventilation efficiency (undirected flow) caused by room overpressure/pressure variants

Lower room temperature setpoints

•Smaller room air velocity

-> Air only plants, room pressure sensors, AQ sensors, VSD fan, adapted air outlets

-> Controversially discussed

Belimo Fan Optimizer

Pressure optimization

•VAV damper positions

Convetional control (CAS application)

Benchmarking u	sing simulation	SIEMENS
	sing simulation places high demand /s must be considered in the require	
-> sep. slides		
page 11/15 Rev 3, 28-Jan-2013	Nur für internen Gebrauch / © Siemens Schw Benedikt Schumacher, 3043	eiz AG 2013. Alle Rechte vorbehalten. Infrastructure & Cities / BT

SIEMENS **Benchmarking AirOptiControl AirOptiControl** Volume flow optimization Pressure optimization/coordination Temperature optimization/coordination Air quality optimization/coordination (humidity optimization/coordination) **Bauer optimization** The reduction in volume flow is based Ventilation efficiency through room overpressure (undirected flow) High, or low supply air temperatures . Lower room temperature setpoints as a result of smaller room air velocity **Belimo Fan Optimizer** Pressure optimization based on VAV damper Room/zone Air handling uni positions Nur für internen Gebra Benedikt Schumacher, 3043 eiz AG 2013. Alle R page 12/15 Rev 3, 28-Jan-2013 Infrastructure & Cities / BT

Benchmarking: Be careful about what is being compared

AirOptiControl

Air volume optimization -> Room shut down, energy efficiency control mode (high/low supply air temperatures, humidity, AQ)

Pressure optimization/coordination -> Damper position

Temperature optimization/coordination

(humidity optimization/coordination

Air quality optimization/coordination

Bauer optimization

Product at BAU since approximately, mid-2012, no longer at CPS

Reduction to air volume

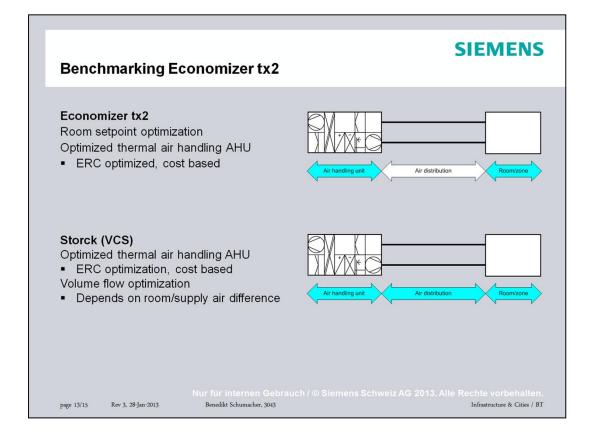
•High, or low supply air temperatures

•Ventilation efficiency (undirected flow) caused by room overpressure/pressure variants

Lower room temperature setpoints

•Smaller room air velocity

-> Air only plants, room pressure sensors, AQ sensors, VSD fan, adapted air outlets


-> Controversially discussed

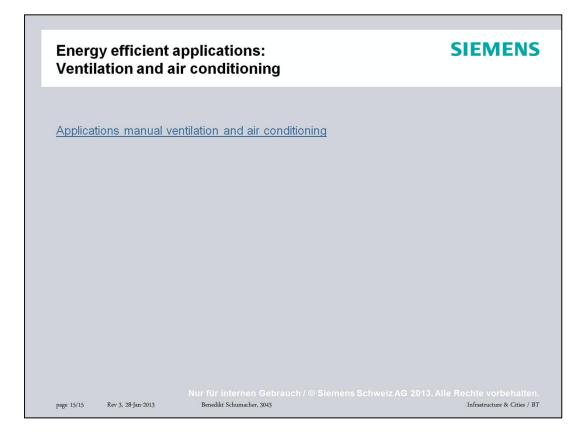
Belimo Fan Optimizer

Pressure optimization

•VAV damper positions

Convetional control (CAS application)

Storck


Volume flow control not suitable for comfort plants with personal occupancy

Strategy sub-volume of tx2

Precision of measurement after mixing air damper is questionable

Convetional control (CAS application)

Energy efficier Heating and re	nt applications: frigeration	SIEMENS
Applications manue	besting and refrigeration supply	
Applications manua	I heating and refrigeration supply	
page 14/15 Rev 3, 28-Jan-2013	Nur für internen Gebrauch / Siemens Sch Benedikt Schumacher, 303	weiz AG 2013. Alle Rechte vorbehalten. Infratructure & Cities / BT

SIEMENS

Documentation (I)

Poster CB

Uch1w43110.ww020.siemens.net\Desigo_Distr\V5.00.201_M300\038_Desigo V5.0 Documentation Expert Edition\Desigo\DESIGO_xx\CM110710de-LED16.pdf Poster FW

Vich1w43110.ww020.siemens.net\Desigo_Distr\V5.00.201_M300\038_Desigo V5.0 Documentation Expert Edition\Desigo\DESIGO_xx\CM110729xx-V500.pdf Application datasheet

Application datasheet \\ch1w43110.ww020.siemens.net\Desigo_Distr\V5.00.201 M300\038_Desigo V5.0 Documentation Expert Edition\Desigo\DESIGO_xx\CM110745de-PRD.pdf \\ch1w43110.ww020.siemens.net\Desigo_Distr\V5.00.201 M300\038_Desigo V5.0 Documentation Expert Edition\Desigo\DESIGO_xx\CM110745de-TABS.pdf \\ch1w43110.ww020.siemens.net\Desigo_Distr\V5.00.201 M300\038_Desigo V5.0 Documentation Expert Edition\Desigo\DESIGO_xx\CM110745de-TX2.pdf \\ch1w43110.ww020.siemens.net\Desigo_Distr\V5.00.201 M300\038_Desigo V5.0 Documentation Expert Edition\Desigo\DESIGO_xx\CM110745de-TX2.pdf \\ch1w43110.ww020.siemens.net\Desigo_Distr\V5.00.201 M300\038_Desigo V5.0 Documentation Expert Edition\Desigo\DESIGO_xx\CM110745de.pdf Fxpert quide Expert guide

\\ch1w43110.ww020.siemens.net\Desigo_Distr\V5.00.201_M300\038_Desigo V5.0 Documentation Expert Edition\Desigo\DESIGO_xx\CM110748de.pdf Programming compounds \\ch1w43110.ww020.siemens.net\Desigo_Distr\V5.00.201_M300\038_Desigo V5.0 Documentation Expert Edition\Desigo\DESIGO_xx\CM110350de.pdf Sequence control

Sequence Control ()ch1w43110.ww020.siemens.net\Desigo_Distr\V5.00.201_M300\038_Desigo V5.0 Documentation Expert Edition\Desigo\DESIGO_xx\CM110427de.pdf Plant control

\ch1w43110.ww020.siemens.net\Desigo_Distr\V5.00.201_M300\038_Desigo V5.0 Documentation Expert Edition\Desigo\DESIGO_xx\CM110428de.pdf

page 16/15 Rev 3, 28-Jan-2013

Benedikt Schumacher, 3043

Infrastructure & Cities / BT

Documentation (II)		SIEMENS
 Application manual ve Energy efficiency in bio Application manual he Desigo Tested application – S Order number: 0-9223 Desigo – Energy effici- datasheet – Siemens Desigo – Energy effici- Building Technologies Desigo – Energy effici- Application datasheet Desigo – Energy effici- Application datasheet Desigo – Energy effici- Application datasheet www.siemens.com/en- http://www.buildingt 	ent applications: h,x-control Economizer tx2; Ap Building Technologies, order number: CM11074 ent applications: AirOptiControl; Application dat , Order number: CM110745en ent applications: Predictive heating controller; – Siemens Building Technologies, order number ent applications: TABS Control; – Siemens Building Technologies, order number	45en-TX2 asheet – Siemens er: CM110745en er: CM110745en
page 17/15 Rev 3, 28-Jan-2013	Nur für internen Gebrauch / © Siemens Schweiz AG 2013. A Benedikt Schumacher, 3043	Alle Rechte vorbehalten. Infrastructure & Cities / BT

SIEMENS

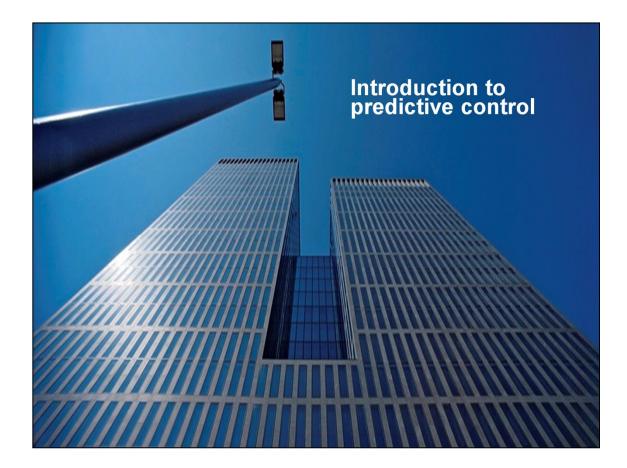
Predictive Heating Control

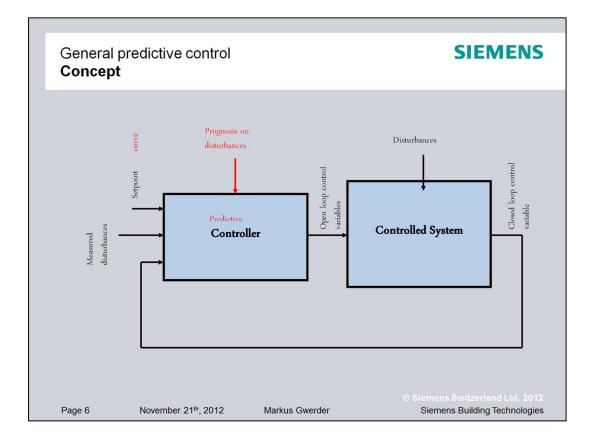
Forward-looking, self-learning, heating control

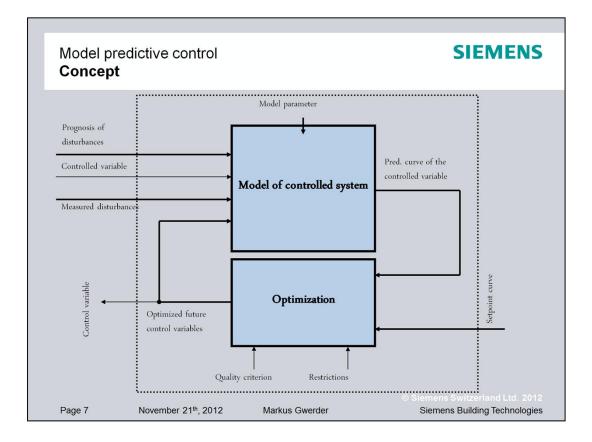
DESIGO - Energy efficiency applications

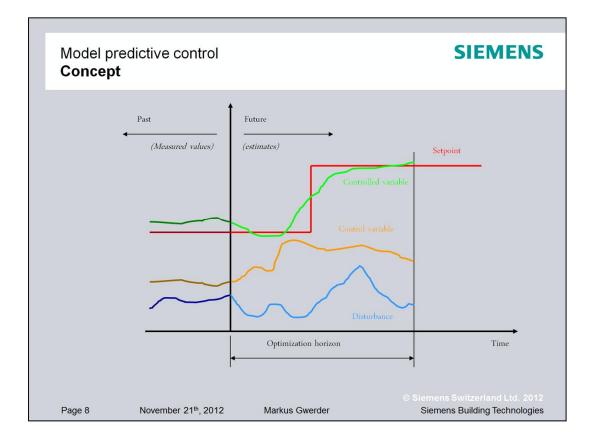
RC-SE, December 2012

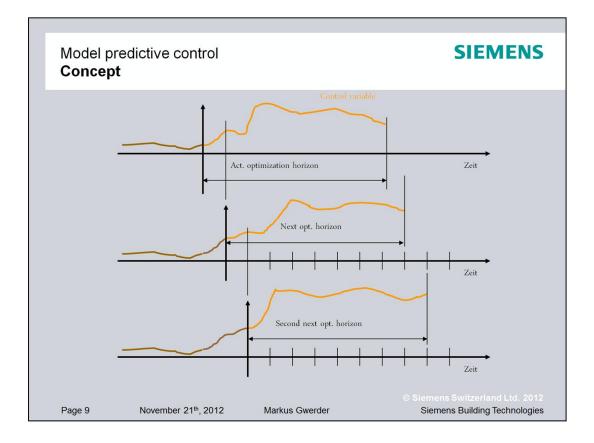
Markus Gwerder Siemens Switzerland Ltd, Zug Building Technologies Division Control Products & Systems markus.gwerder@siemens.com

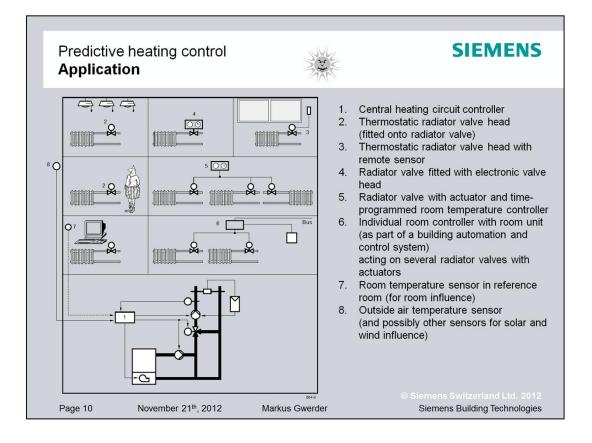

Text

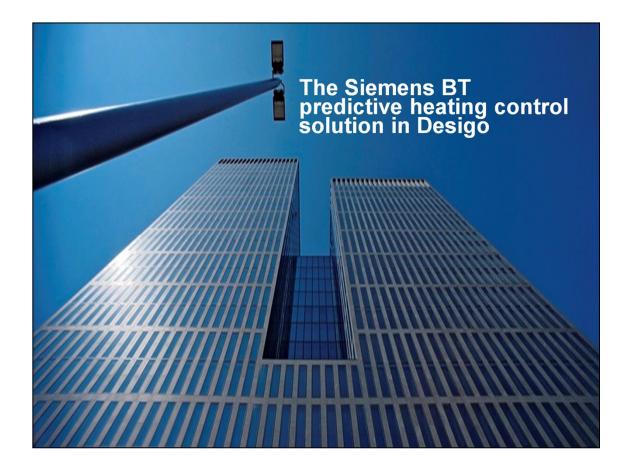

Text

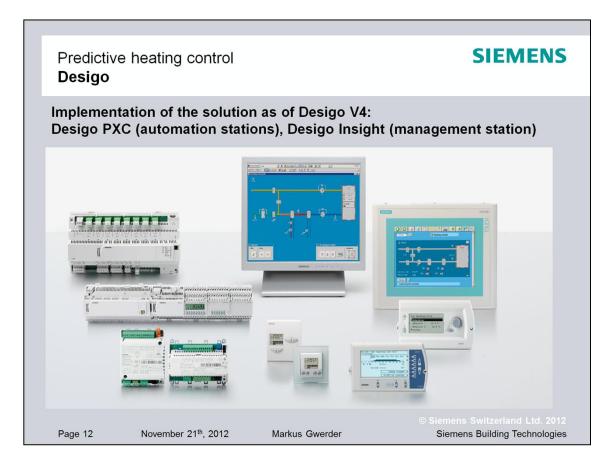

Predictive heating control Contents		SIEMENS
 Predictive (forward-looking) Introduction of predictive co - Concept Application heating control Conventional weather-dep Predictive heating control The Siemens BT predictive Delivery Application and goals Function conventional and Comparison of simulations control Benefits Measured results from tes 	ontrol l bendent heating co heating control so l predictive heating s of conventional a t buildings	ntrol lution in Desigo g control
Questions and discussion Page 2 November 21 th , 2012	Markus Gwerder	Siemens Switzerland Ltd. 2012 Siemens Building Technologies




Predicti	ve control at Siem	ens	SIEMENS
	controls for solar pl r with the ETH Zürich, L&G	ants (1983-1985)	
BFE proj	neating controller (1) iect, CSEM, EPFL, Sauter, I approaches: Neural network	L&S,	programming
Sauter, (n project Neurobat he CSEM oduct development	eating controller (19	98-2000)
Alternativ Patent re Field tes Revised Field tes Manual a Predictiv	ens activities (1998- ve solution "Predictive heatin egistration (Summer 1999) ting of predictive heating co the algorithm for the predict ting of predictive heating co adjustment procedure for pro- e controls in other HVAC ap OptiControl-I (2007-2010) a	ng controller" (End of 1998 ntroller with PC (heating se ive heating controller (2002 ntroller with Desigo PXC (h edictive heating controller (oplications (2003-2009)	ason 1999/2000) 2/2003) eating season 2003/2004)
Page 4	November 21 th , 2012	Markus Gwerder	© Siemens Switzerland Ltd. 2012 Siemens Building Technologies



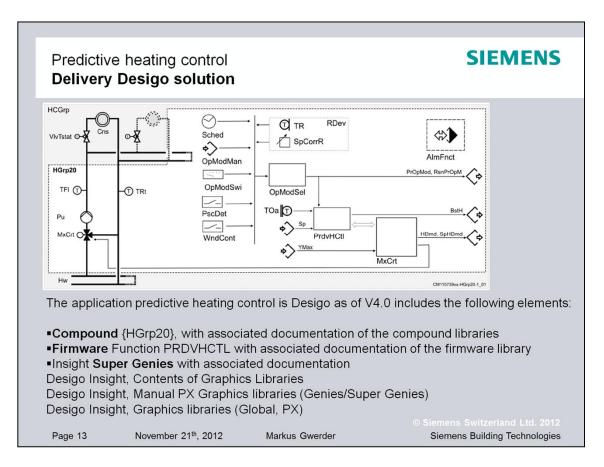




AP1: Basics

AP1.1 Preparing a simulation tool (including lab trials to validate the model)

AP1.2 Evaluate existing simulation tools


AP1.3 Interaction of TABS with ventilation plants and supplemental systems (deleted)

AP1.4 Examinations on cycle mode

No planned at the start of the project, but quickly concluded:

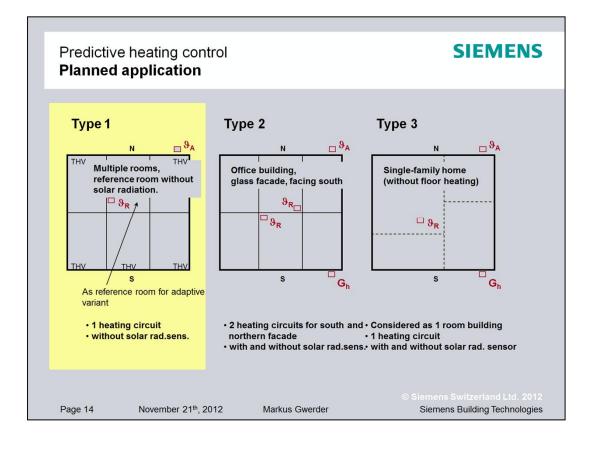
AP1.x Studies on proceeding in AP2

Various solution approaches developed. Ultimately decided in favor of the solution concept, "Unknown-but-bounded approach".

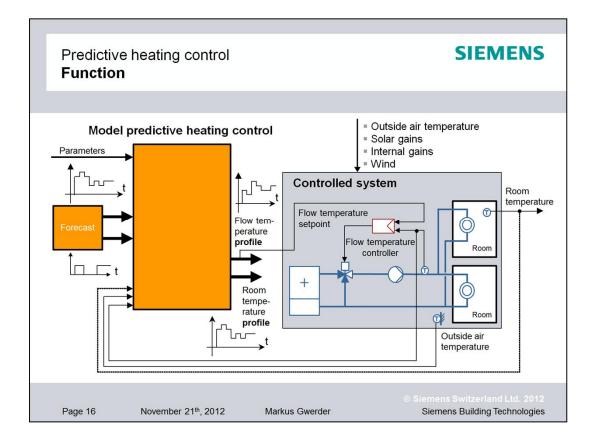
AP1: Basics

AP1.1 Preparing a simulation tool (including lab trials to validate the model)

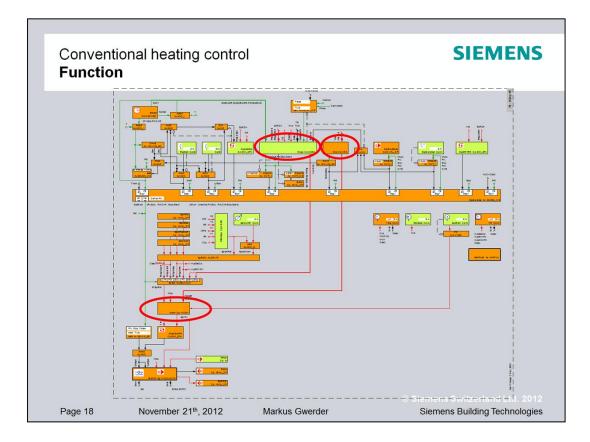
AP1.2 Evaluate existing simulation tools

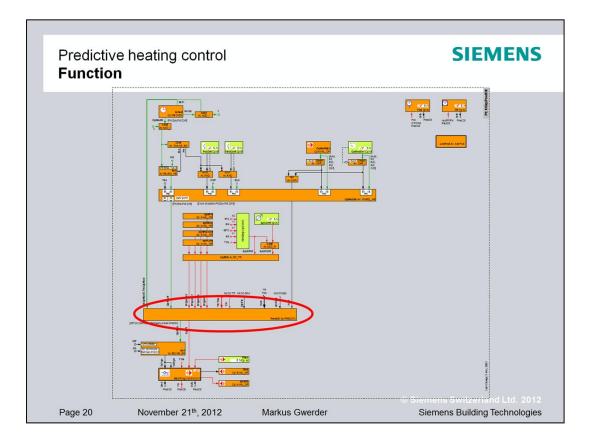

AP1.3 Interaction of TABS with ventilation plants and supplemental systems (deleted)

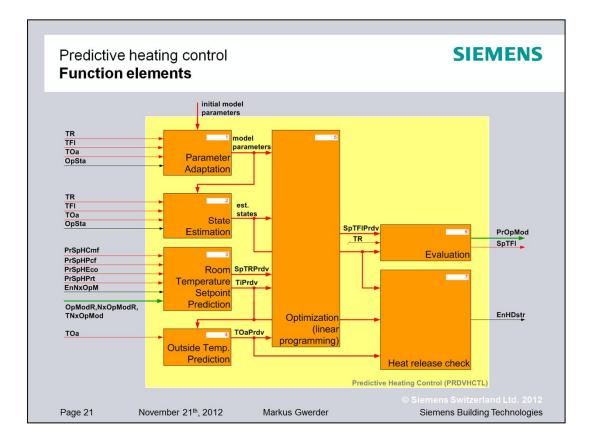
AP1.4 Examinations on cycle mode

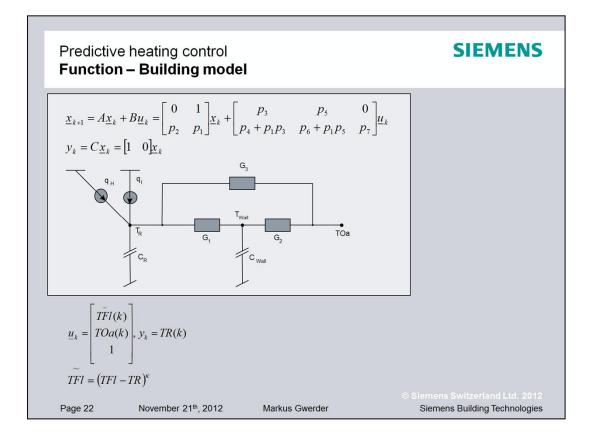

No planned at the start of the project, but quickly concluded:

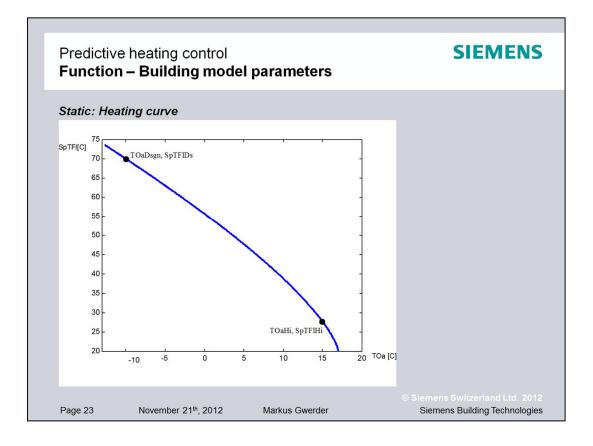
AP1.x Studies on proceeding in AP2

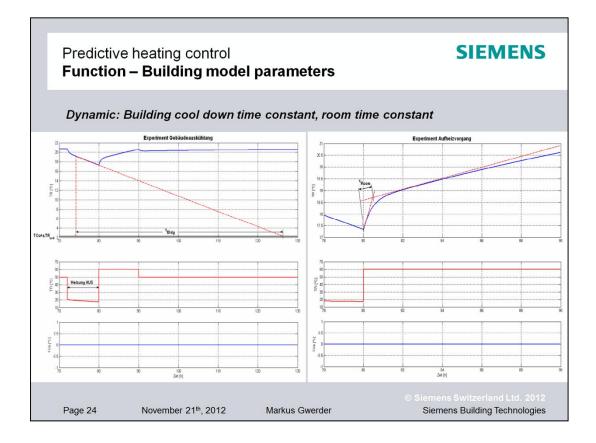

Various solution approaches developed. Ultimately decided in favor of the solution concept, "Unknown-but-bounded approach".

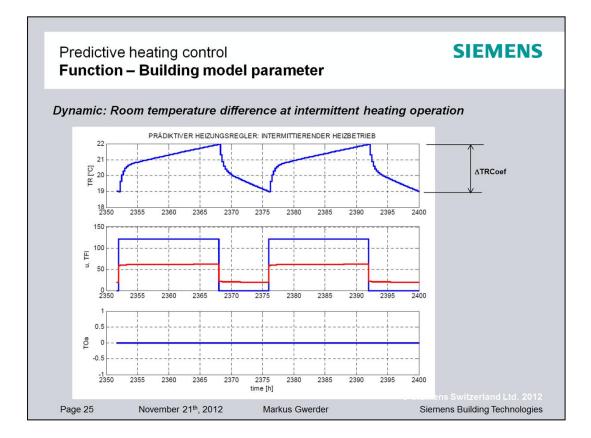

Predictiv Goals	e heating control		SIEMENS	
Commis Replac		I function which includes	a dynamic building model	
<i>Explaina</i> The co	able ontrol strategy is intuitive a	and easy to understand		
Energy	<i>Energy & comfort</i> Energy savings by minimizing energy consumption while simultaneously maintaining stricter comfort barriers			
	<i>unctioning in all situ</i>		mpensation behavior)	
Experi	Innovations and vision for the future Experiences with predictive heating controllers easy employment of (model) predictive controls for other HVAC applications as well			
	oment of the first (roller in building a		ilable model predictive ontrol!	
Page 15	November 21 th , 2012	Markus Gwerder	Siemens Switzerland Ltd. 2012 Siemens Building Technologies	

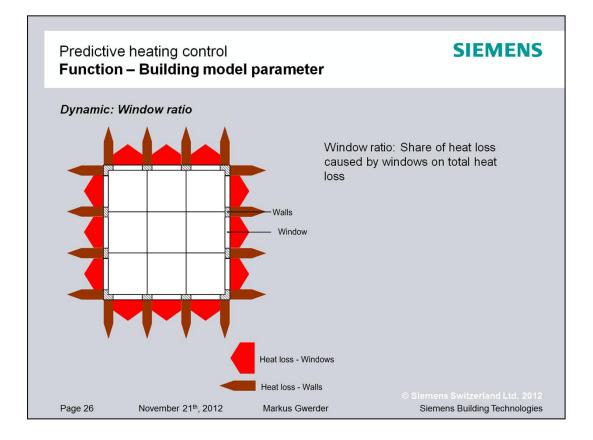


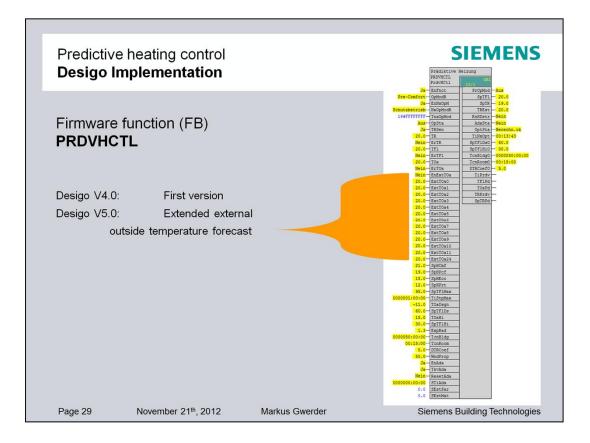

Conventio Function	nal heating contro	l	SIEMENS
 Sched Heatin (in add adjustr Optime for chate Heatin transiti Sustai 	lition, an optional ro ment) um Start Stop contro anges in occupancy	cify room operating weather-dependent om temperate-dependent of (OSSC) to optimize to switch on and o utumn)	mode t flow temperature control
Page 17	November 21 th , 2012	Markus Gwerder	© Siemens Switzerland Ltd. 2012 Siemens Building Technologies




Predictiv Functio	e heating control n		SIEMENS
 Sch Forvidete OSS 	Inctions of predictiv eduler program to spe vard-looking/optimizir rmine the flow tempe SC, HRA) I) controller flow temp	ecify room operating lg function PRDVHC rature setpoint (assu	mode
Page 19	November 21 th , 2012	Markus Gwerder	© Siemens Switzerland Ltd. 2012 Siemens Building Technologies







	e heating control - Optimization		SIEMENS
Linear prog problem	ramming to resolve the op		$\begin{array}{l} \underset{x \in \mathfrak{R}^{n}}{\text{minimize}} q(x) = f^{T}x\\ (i) A_{1}x \leq b_{1} \end{array}$
	ned) flow temperatures It optimization horizon	for discuste times on	(<i>ii</i>) $A_2 x = b_2$ (<i>iii</i>) $x \ge 0$
	ns to the room tempera		TR ≥ SpTR ≤ SpTFlMax + (TR-SpTRnom)
Equations - non ava			
Inequalitie - Limitatio	es (iii) ns to flow temperature	to the downside: <i>SpT</i>	FI≥TR
Page 27	November 21 th , 2012	Markus Gwerder	© Siemens Switzerland Ltd. 2013 Siemens Building Technologie

	heating control – After treatmen	t	SIEMENS
Evaluatio Determine th Off On Boost heat Stop	he operating mode to the Switch off (pump off) Switch on, not in boost Boost heating (target	ne optimized flow tempera st heat or switch-off phas temperature: SpHCmf or (target room temperature	e (pump on) · SpHPcf)
Determine e If there is no comfort crite		if no heat output is enable	optimization horizon, the ed.
Page 28	November 21 th , 2012	Markus Gwerder	© Siemens Switzerland Ltd. 2012 Siemens Building Technologies

		tation													
	Parameter-Editor - BU	PrdvHCtl [Prädiktive Heizungsre	eaeluna]											Ĩ	- 0
	Datei Ansicht Hill	e Prädiktive Heizungsregel	unal : DrOak	dad: two	IDDDMLCT	Deadlatic	e heating co	otcolle							
	Fiter Ale Anschüt			-	(TEMICI	ch realea	e nearing ea	indone	9						
Firmware	Block Eigenschafter			_											
	Kürzel	Beschreibung	Online-Wert	Geänderter	Einheit	Sichtbar			Kürzel	Beschreibung	Online-Wert	Geänderter	Einheit	Sichtbar	1
function (FB)	> EnFnct	Freigabe Funktion	Ja		Nein, Ja	₽.	1	< ×	PrOpMod	Aktuelle Betriebsart	Aus		Prädiktiver Regi	2	
	> OoServ > DefVal	Ausser Betrieb Vorgabewert	Aus 20		Aus, En	<u> </u>		× (SpTFI SpTR	Voriauftemperatursollwert Rauntemperatursollwert	20		*C	2	
PRDVHCTL	> OpModR	Raumbetriebsart	Pre-Comfort		Raumopt Mode	7		۲ ۲	TREst	Geschätzte Rauntemperatur				7	
PRDVICIL	> EnNxOpM	Freigabe nächste Betr'art	Ja		Nein, Ja	P		٤.	EnHDstr	Freigabe Wärmeverteilung	Nein			7	1
	> NxOpModR > TnxOpMod	Nächste Raumbetriebsart Zeit nächste Betrartänd	Schutzbetrieb		Raumopt Mode:	2		× ×	AdaSta OntSta	Adaptionszustand Optimierungszustand	Nein Berechn ok		Nein, Ja Prädätiver Onti	2	
	> OpSta	Betriebszustand	Aus		Aus, En	7		<	TiltxOpt	Zeit bis zur nächst.Optim.	00:08:54	-	risokerer ope	7	
	> TRSen	Raumtemperaturfühler	Ja		Nein, Ja	7		<	SpTFIDsO	VLT Sollw.Ausleg -AT Ausg.				₽	1
	> TR > ErTR	Rauntemperatur Fehler Rauntemperatur	20 Nein		°C Nein, Ja	2		× ×	SpTFIH/O TcnBidgO	VL-Temp'solw.ob.AT Ausg. Zetkonst.Gebäude Ausgang	30 0000050 00:00			2	
	> 171	Vorlauftemperatur	20			R R		× ×	TenRoomO	Zetkonstante Raum Ausgang				R .	
	> ErTF1	Fehler Vorlauftemperatur	Nein		Nein, Ja	V		<	DTRCoefO	Rauntemp'diff.Koeff.Ausg.	5		deitaK	P	
	> TOs	Aussentemperatur	20		°C	2		× ×	T/Prdv TFIP4	Prádiktive Zeitpunkte Prádiktiver VI. Temp'soltw				P	
	> ErTOa > EnExtTOa	Fehler Aussentemperatur Freigabe ext.AT Vorhersage	Nein	-	Nein, Ja Nein, Ja	D D		<	TOAPd	Pradktiver VL-Temp'solw. Pradktive Aussentemp				0	
	ExtT0a0	Externe AT Vorhersage 0	20		*C	ų.		<	TRPrdv	Prådiktive Raumtemperatur				Ť.	
	> ExtTOa1		20		°C	P		<	SpTRPd	Prädktiver Rauntemp'sollw				2	
	> ExtTOa2 > ExtTOa3		20			2	- 1	< <	TPrdv0 TPrdv1	Prädiktiver Zeitpunkt 0 Prädiktiver Zeitpunkt 1	2700			-	
	> ExtT0a4	Externe AT Vorhersage 4	20	-	*C	V		<	TIProv2	Prädiktiver Zeitpunkt 2	5400		5	r	
	> ExtTOa5		20			17		<	TIPrdv3	Prädiktiver Zeitpunkt 3	9000		5	E	1
	 ExtT0a6 ExtT0a7 		20	_		P		×	TIProv4	Prädiktiver Zeitpunkt 4 Prädiktiver Zeitpunkt 5	12600		5	<u> </u>	
	> ExtTOa8		20			R R		×.	TiProv6	Prádktiver Zetpunkt 6	22500		5	-	
	> ExtT0a9	Externe AT Vorhersage 9	20			F		<	TIPrdv7	Prädiktiver Zeitpunkt 7	28800		5	r	1
	> ExtTOa10 > ExtTOa11		20 20	_	10 10	2		K.	TProv8 TProv9	Prädiktiver Zeitpunkt 8 Prädiktiver Zeitpunkt 9	36000 44100		5	<u> </u>	
	> ExtT0a12	Externe AT Vorhersage 11 Externe AT Vorhersage 12		-	*C	-		× <	TPrdv9	Pradktiver Zetpunkt 9 Pradktiver Zetpunkt 10	44100 54000		5	-	
	> ExtTOa13	Externe AT Vorhersage 13	20		°C	Г		<	TIProv11	Prädiktiver Zeitpunkt 11	65700		8	Г	1
	> ExtTOa14	Externe AT Vorhersage 14	20		*C	<u> </u>		٤.	TiPrdv12	Prädktiver Zetpunkt 12	79200		8	<u> </u>	
	> ExtT0a15 > ExtT0a16	Externe AT Vorhersage 15 Externe AT Vorhersage 16	20	-	10	-		K K	TPrdv13 TPrdv14	Prädiktiver Zeitpunkt 13 Prädiktiver Zeitpunkt 14	94500		5	-	
	> ExtTOa17		20		*C	r		κ.	TPrdv15	Prádktiver Zetpunkt 15	133200		5	Г	
	> ExtTOa18	Externe AT Vorhersage 18			*C	Г		<	TIProv16	Prødiktiver Zeitpunkt 16	157500		5	Г	
	 ExtTOa19 ExtTOa20 	Externe AT Vorhersage 19 Externe AT Vorhersage 20	20	-	*C *C	F		× ×	TPrdv17 TPrdv18	Prädiktiver Zeitpunkt 17 Prädiktiver Zeitpunkt 17	186300 219600		5	<u> </u>	
	> ExtT0a20 > ExtT0a21		20		10	-	1	×	TProv18 TProv19	Pradativer Zetpunkt 17 Pradativer Zetpunkt 19	219600		5	-	
	> ExtT0a22	Externe AT Vorhersage 22	20		°C	Г		<	TiPrdv20	Prädiktiver Zeitpunkt 20	0		8	Г	1
	> ExtT0a23	Externe AT Vorhersage 23			*C			× ×	TFIPd0 TFIPd1	Prädiktiver VLT Sollw 0 Prädiktiver VLT Sollw 1	20		*C	F	
	ExtT0a24 > SpHCmf	Externe AT Vorhersage 24 Heizsollwert Comfort	20	-		4		× ×	TFIPd1 TFIPd2	Prädiktiver VLT Sollw.1 Prädiktiver VLT Sollw.2	19.99836		*C	-	
	> SpHPcf	Heizsollwert Pre-Comfort	19		*C	P		<	TFIPd3	Prádktiver VLT Sollw.3	19.99377		°C	F	
	> SpHEco	Heizsollwert Economy	15			P		K K	TFIPd4	Prädiktiver VLT Sollw 4	19.99121		°C	Г	1
	> SpHPt1 > SpTFIMax	Heizsollwert Protection Max Voriautemp'sollwert	12			P		K K	TFIPd5 TFIPd5	Prädiktiver VLT Sollw.5 Prädiktiver VLT Sollw.6	19.98809		*C	2	
	> SpTFMax > TStpMax	Max.Vorlauftemp'sollwert Maximale Stoppdauer	95	2	°C	P P		<	TFIPd6 TFIPd7	Pradativer VLT Solw.5 Pradativer VLT Solw.7	19.95444		°C	-	
	> TOaDson	Auslegungsaussentemp.	-11			P		<	TFIPd8 TFIPd9	Pradiktiver VLT Sollw.8	19.97579		*C	Г	
	> SpTFIDs	VLT Solw Auslegungs-AT			*C	D'				Prädätiver VLT Solw 9	19.97059		*C		

Г

SIEMENS Predictive heating control Simulation comparison of conventional versus predictive control I

Simulated building

Heat insulation: Swiss average, U value of building exterior shell 1.5 W/(m²K)
 Window ratio 20 %

Location: Zurich (SMA), measured data for the 2007

Heat gains: Low (0 to 30 W/m², peak value for strong solar radiation), office occupancy (large
office as per SIA 2024)

Comfort requirements: Room temperature setpoint: Comfort = 21°C, Economy = 15°C Room operating mode Comfort Monday through Friday from 8 am to 7 pm; otherwise Economy

Control strategies

Predictive heating controller

Exact simulation of the predictive heating controller function from Desigo V4
 The room temperature measurement is used, the room temperature measurement occurs ideally

•The control is initially well set and improves control accuracy even more through the use of an adaptive function in the simulation curve. Conventional heating control 1

 Simulation of the conventional heating control function with elements heating limit switch (FB HRA), heating curve (FB HCRV) and

Optimum Start Stop Control function (FB OSSC). The elements correspond exactly to those from Desigo V4. The room temperature measurement is used for optimum start-stop control, the room temperature measurement is ideal. The functions OSSC and HRA (heating limit for Comfort: 16.5°C) are **well set**, adaption of function OSSC is switched off.

The function HCRV is also well set, the heating curve must be increased due to set backs or reduced operation at night to reduce an otherwise insufficient level of comfort (especially in the morning).

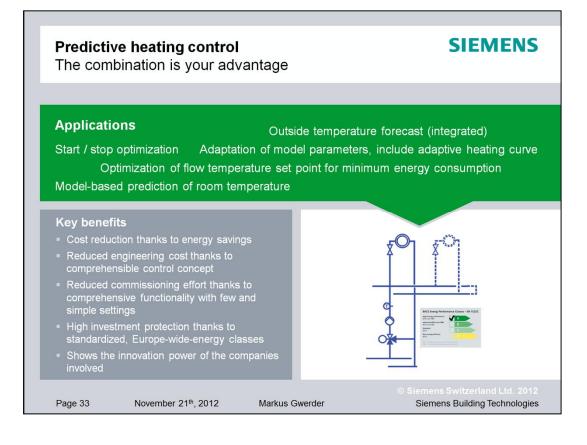
Conventional heating control 2

Simulation of the conventional heating function with elements heating limit switch (FB HRA) and heating curve (FB HCRV). The elements The elements corresponding exactly to those in Desigo V4.

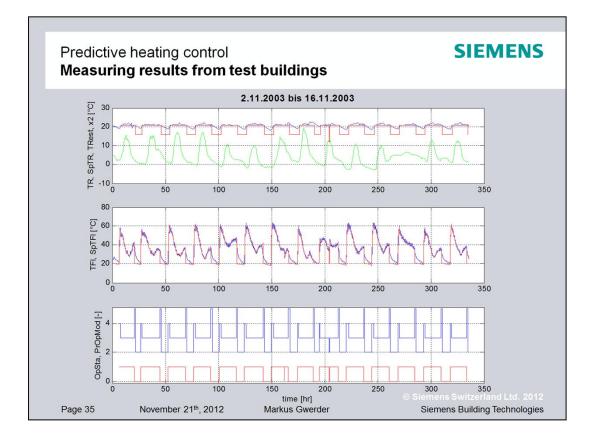
Instead of the optimum start-stop control, the start of Comfort operating mode is advances (Monday: 2 am instead of 8 am, Tuesday through Friday: 6 am instead of 8 am. The function HRA (heat limit for Comfort: 16.5°C) is well set. •The function HCRV is also well set, the heating curve must be increased due to set backs or reduced operation at night to reduce an

otherwise insufficient level of Comfort (especially in the morning).

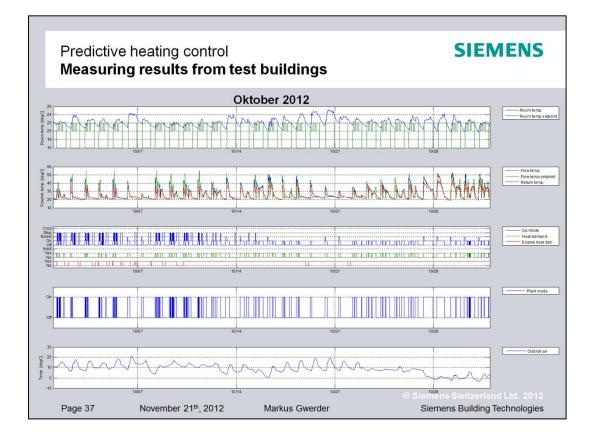
Page 31

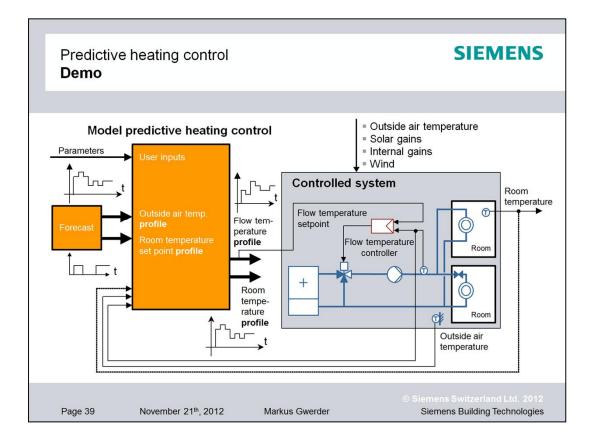

November 21th, 2012

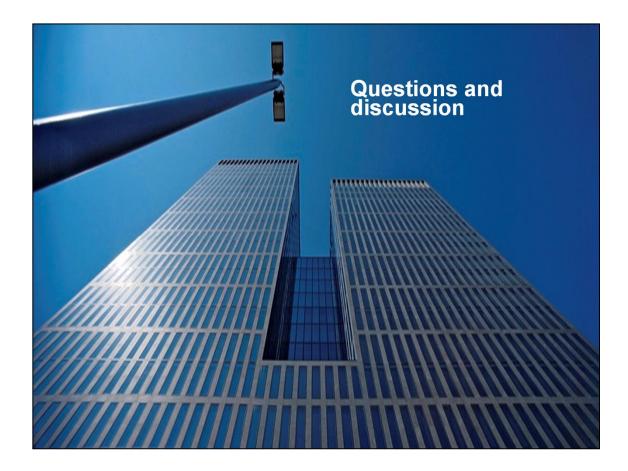
Markus Gwerder


Siemens Building Technologies

	Prädiktive Heizungsregelung (HGrp20)	Konventionelle Heizungsregelung 1 mit Abschaltbetrieb in der Nacht (HGrp15)	Konventionelle Heizungsregelung 1 mit Reduziertbetrieb in der Nacht	Konventionelle Heizungsregelung 2 mit Abschattbetrieb in der Nacht (HGrp15)	Konventionelle Heizungsregelung 2 mit Reduziertbetrieb in der Nacht
Heizenergieverbrauch: Nutzenergie in [kWh/m²]	151	156 (+3 %)	174 (+13 %)	144 (-4 %)	174 (+13 %)
Pumpenlaufzeit Zonenpumpe in [h] pro Jahr (8760 h)	3081	2895 (-6 %)	6145 (+99 %)	3077 (-0.1 %)	6237 (+102 %)
Komfort: Unterschreitung Raumtemperatur- sollwert in [Kh]	310	644 (+108 %)	304 (-2 %)	2331 (+652 %)	427 (+38 %)


Γ


Predictive heatin Measuring resu	ult from test buildings	SIEMEN
Building	Location: Garmisch-Partenkirchen Renovated older building Medium level of thermal inertia	
HVAC technology	Single-stage boiler serves - Hot water - One heating circuit Heat transfer via radiators, flow temperature control via reference room with room temperature sensor (no therr room)	U
Data logging	Ca. 25 data points are logged at various scan times (mi throughout the entire heating season using Desigo Insig	· · · · · · · · · · · · · · · · · · ·



SIEMENS Predictive heating control Measuring results from test buildings Building Location: Schaffhausen Renovated older building Medium thermal inertia HVAC technology Fuel cell with supplemental burner, hybrid solar collector, PV - Hot water - One heating circuit Heat transfer via radiators, flow temperature control via mixing valve Reference room with room temperature sensor (no thermostatic valves in reference room) Data logging Logging of ca. 250 data points with various scan times (at least one minute) with Desigo Insight Page 36 November 21th, 2012 Markus Gwerder Siemens Building Technologies

SIEMENS

AirOptiControl

Demand-optimized air volume flow with optimum pressure distribution

DESIGO - Energy efficiency applications

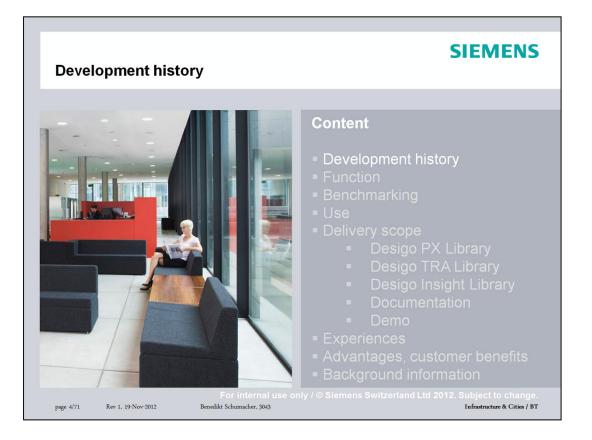
RC-SE, December 2012

Author:

Benedikt Schumacher, 3043

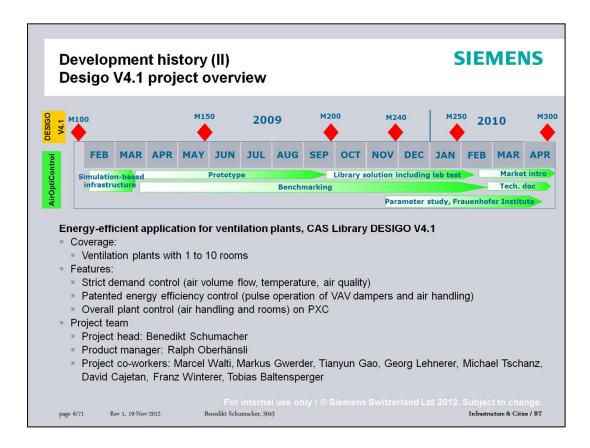
Revision: Document status: 1, 19-Nov-2012 Approved - valid without signature

			SIEMENS
Rev	ision hist	orv	SILVILIU
		,	
Rev	Date	Author	Changes, Comments dh1 Status=Final - without Approval
1	19-Nov-2012	Benedikt Schumacher	Status=Final - without Approval


Bild 2

- dh1 How to remove or insert table rows?
 - right mouse click
 - Delete Rows
 - Insert Rows (befor the selected row)

Use Toolbox > Template Setup to update a template and the revision history for the template. Donat Hutter; 2008-02-29



Background information: Parameter optimization with Frauenhofer, simulation infrastructure

			SIEMENS
Deve	lopment hist	ory (I)	
 Air 	r-2010: Desigo OptiControl for 10 rooms	V4.1 Desigo PXC, new development o	of library applications for 1
 Air Im int 	plemented inte	V5.0 Desigo PXC together with Desigo rface on PXC (AHU80/RItf) and P VAV01 application in AHU80 with	PXC3 (VAV01/SplAir01) to
 Air Ex pre- col de 	tensions (integ essure optimiza ntroller, select	/5.1 Desigo PXC together with Design ration of VAV controllers without of ation via setpoint/actual value dev ogic for a maximum number of de evant damper position for pressure	damper position, with iation to the VAV eterminative dampers to
page 5/71	Rev 1, 19-Nov-2012	For internal use only / © Siemens Sw Benedikt Schumacher, 3043	itzerland Ltd 2012. Subject to change. Infrastructure & Cities / BT

OEM-VAV controller: 0..10V signals for volume flow setpoint and damper position as a supplement to the PL link devices (0.100%)

After a rather difficult start – a thesis did not make a significant impact – an actual project was set up at the start of 2009 that was transferred shortly thereafter to a partial project as part of V4.1; this permitted access to important resources.

Resources

Schedule (actual)

What started out as a narrow project concept with a short implementation period, eventually turned into a veritable project. As time passed, requirements were established for comprehensive benchmarking in the A/C lab, a field test, and a study together with Frauenhofer

What did we get for the considerable investment?

DESIGO library solutions (4 new plant compounds)

Visualization using DESIGO INSIGHT

Technical document

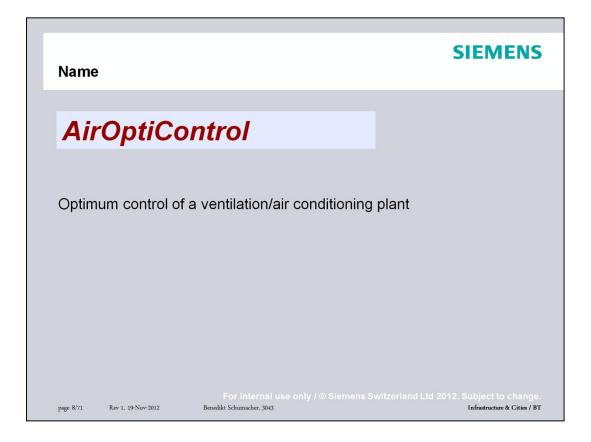
•Reference manual

Expert guide

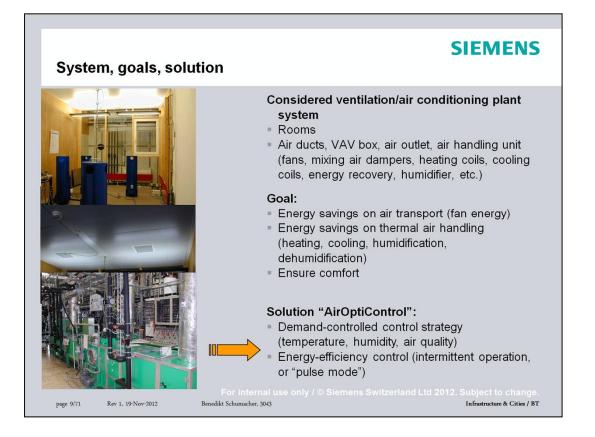
Sales documentation

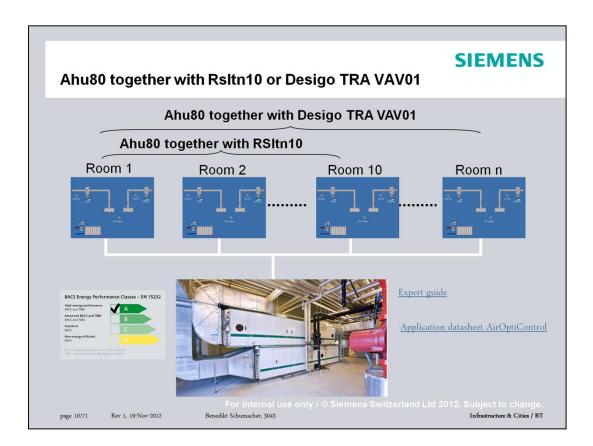
Demonstration application

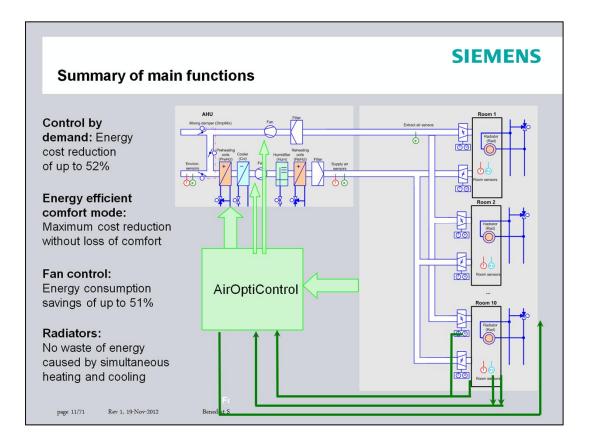
Technical doc -> Ref-HB elements explained for AHU80, then the coordination for RDmdCtl2 and switch to RDmdCtl1 and explanation of EEffCtl and EEffOpt


Technical doc -> Display content of Expert Guide, Application table pg.123, Efficiency control pg.188

Sales documenation -> Display content, especially the numbers


Demostration application -> Start demo (explain elements, conventional, explain AirOptiCtl, simulation)

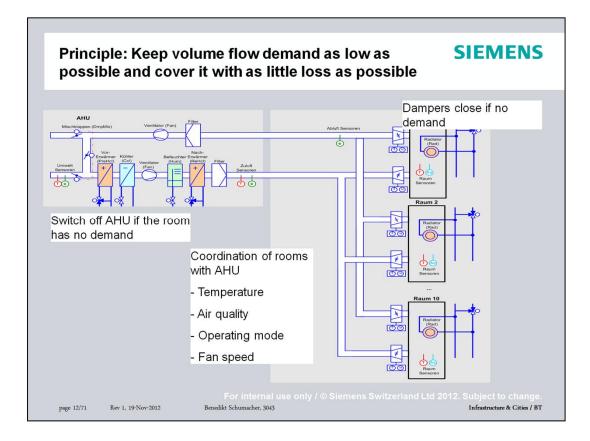

Conclude with Genie



Nothing more, nothing less:

In the expert guide, show: Visio AHU80/RSltn and AHU/SplyAir01/VAV01

Modular, partial optimization is possible. Start, for example, with fan optimization

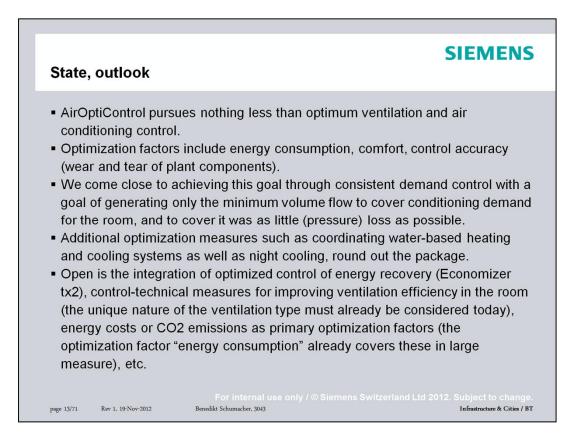

Modular units:

Pressure optimization (pressure coordination) -> Lower fan energy consumption

Temperature optimization -> centralized optimization of the temperature level helps reduce air volume flow demand at air quality optimization

Energy-efficiency control -> Switching off rooms or plants, as applicable, reduces air volume flow demand

Additional optimization: Radiator coordination, night cooling

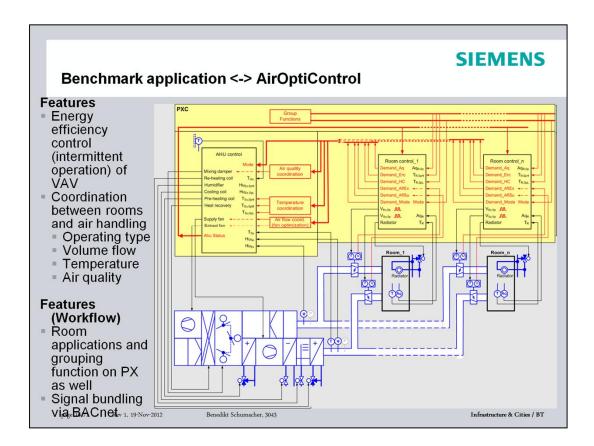


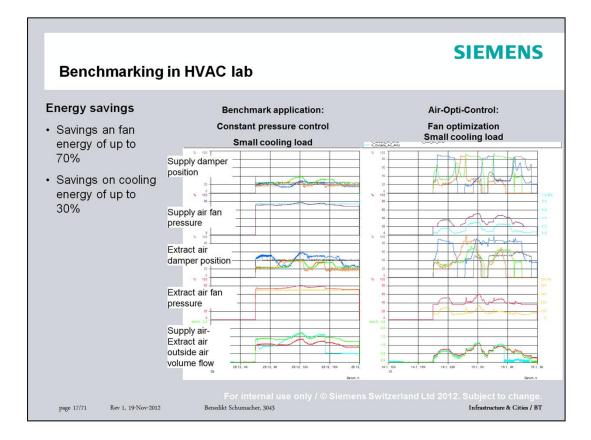
Considered from another viewpoint:

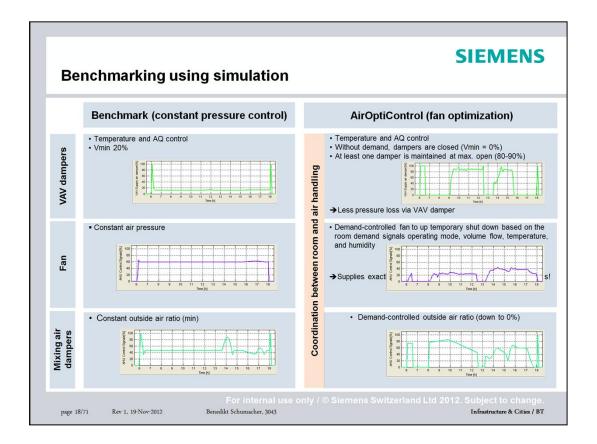
Volume flow demand

- a) Keep as low as possible
- b) Cover demand with as little loss as possible

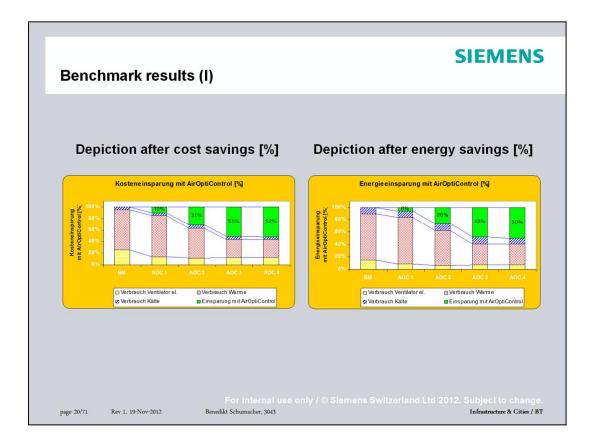
Lower volume flow also includes less thermal conditioning and less transportation energy.

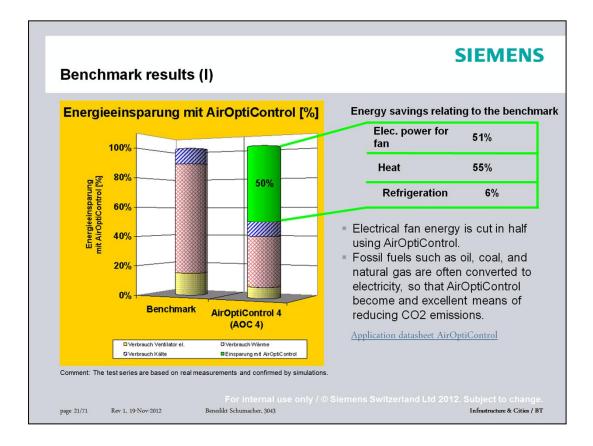

Example for improving ventilation efficiency: System selection is presumably decisive, source ventilation must, however, be correctly operated from a control-technical viewpoint to take advantage of system advantages.

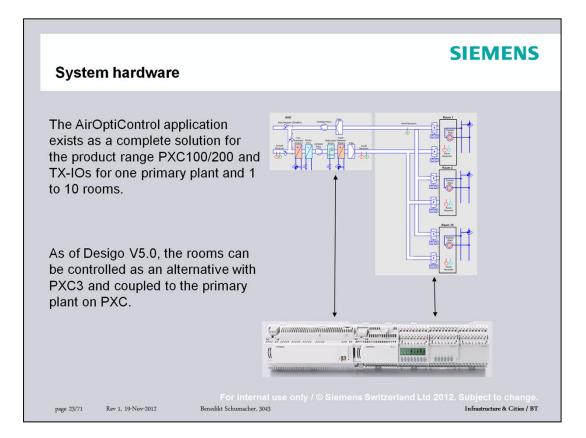

Sensor placement


•••

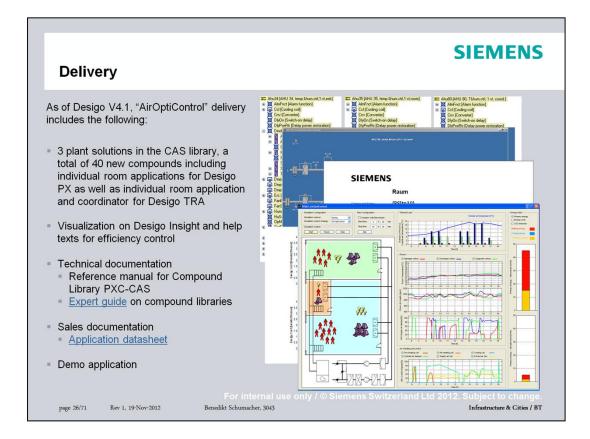
SIEMENS Benchmarking conducted on energy savings									
Plant type	Control	Simulation	HVAC Laboratory	Field test (Steinhausen)	HWIL Simulation	Fraunhofer			
H, C, Hmd, DeHmd	EEC 1R	X (Nov09)	X (Nov09, Jan10)		0	-			
H, C, Hmd, DeHmd	EEC 10R	X (Dec09)	X (Jan10)	X (Feb10)	0	X (Parameter for Vol-Opt			
H, C, Hmd, DeHmd	HQ 1R	X (Nov09)	X (Dec09, Jan10)		0	÷			
H, C, Hmd, DeHmd	HQ 10R	X (Dec09)	X (Jan10)	X (Feb10)	0	-			
H (H,C)	RC-1 1R	X (Feb09)	0	-	0	•			
H (H, C)	RC-1 10R	X (March09)	0	-	0	-			
H, C, Hmd, DeHmd	Ideal Control 1R	0	-	-	-	el			
H, C, Hmd, DeHmd	Ideal Control 10R	0	-	-	-	-			
H, C, Hmd, DeHmd	SIA 1R	X (check/adapt room demand)	-	-	-	-			
H, C, Hmd, DeHmd	Competitor 1R	0	X (Feb10)	0	0	-			
H, C, Hmd, DeHmd	Competitor 10R	0	X (Feb10)	0	0	-			






volume pressure Description D	Benchmar	k results (I)			9	SIEMENS
BenchmarkFunctionality (AOC 1)Functionality (AOC 2)Functionality (AOC 3)Functionality (AOC 4)Control air volumeConstant air pressureBased on demandBased on demandBased on demandBased on demandBased on demandEnergy Efficiency Control ModeNoNoYesYesYesControl air qualityConstant outside air volumeConstant outside air volumeConstant outside air volumeConstant outside air volumeConstant outside air volumeBased on demandBased on demandControl air qualitySupply air temperature adjusted by outsideSupply air temperature adjusted by outsideSupply air temperatureSupply air temperature	Primary plant	t: Heating: Nati Cooling: Refi Measuremen	ural gas burner, igeration mach t: Temperature	centralized air ine, centralized and air quality	handling unit wi	•
volume pressure Based on demand Based on demand		Benchmark	Functionality	Functionality	Functionality	Functionality 4
Efficiency Control Mode No No Yes Yes Yes Control Mode Constant outside air quality Constant outside air volume Constant outside air volume Constant outside air volume Based on demand Based on demand Based on demand Control quality Supply air temperature Supply air temperature Supply air temperature Based on demand Based on demand			Based on demand	Based on demand	Based on demand	Based on demand
quality volume volume volume Based on demand Based on demand Control temperature Supply air Supply air Supply air Supply air Based on demand Based on	Efficiency	No	No	Yes	Yes	Yes
Control temperature temperature temperature temperature adjusted by outside adjusted by outside adjusted by outside Based on demand Based on demand					Based on demand	Based on demand
I temperature		temperature	temperature	temperature	Based on demand	Based on demand
Night cooling No No No Yes Comment: The test series are based on real measurements, confirmed by simulations. Image: Confirmed by simulations. Image: Confirmed by simulations. Image: Confirmed by simulations.		1.12		110	No	Yes

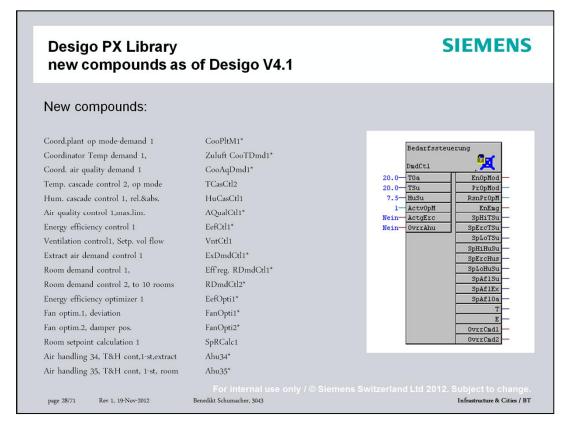
Please attention to the details.

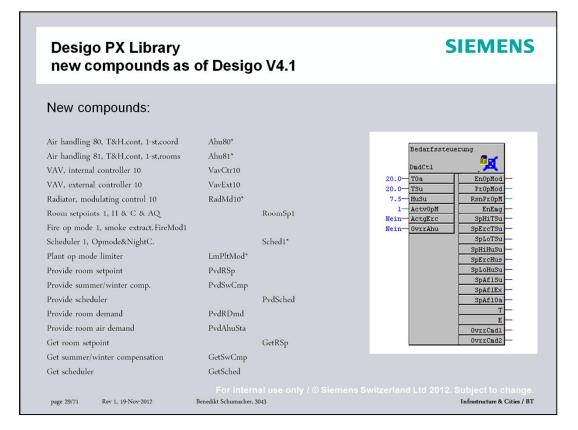


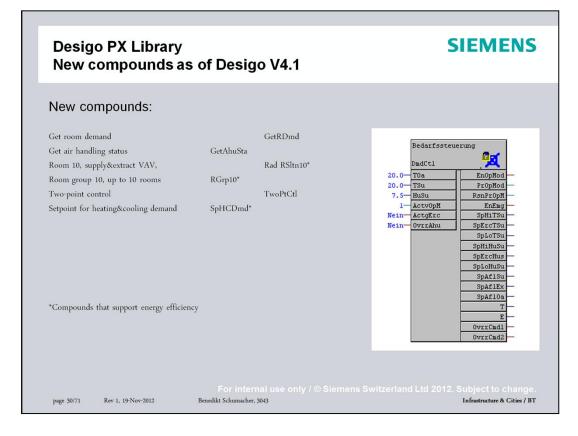
Use	SIEMENS
	 Content Development history Function Benchmarking Use Delivery scope Delivery scope Desigo TRA Library Desigo Insight Library Documentation Demo Experiences Advantages, customer benefits Background information
For i page 22/71 Rev 1, 19-Nov-2012 Benedikt Schur	internal use only / © Siemens Switzerland Ltd 2012. Subject to change. macher, 3043 Infrastructure & Cities / BT

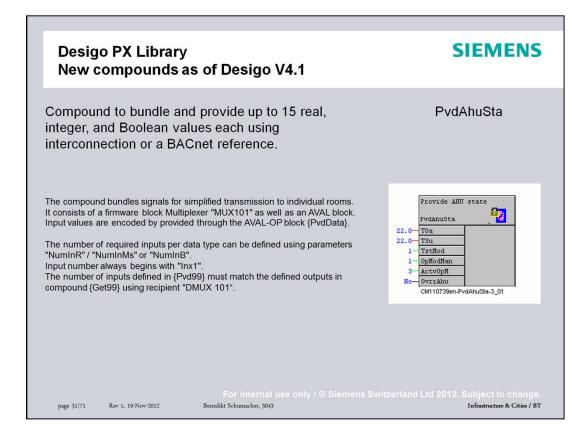
Technical documentation -> Explain ref-HB elements for AHU80 (A / APlt / Ahu), then explain coordination for RDmdCtl2 (A / AFnct / DmdAFnct) and switch to RDmdCtl1 and explain EEffCtl and EEffOpt

Technical doc -> Display content of Expert Guide, Application table pg.123, Efficiency control pg.188

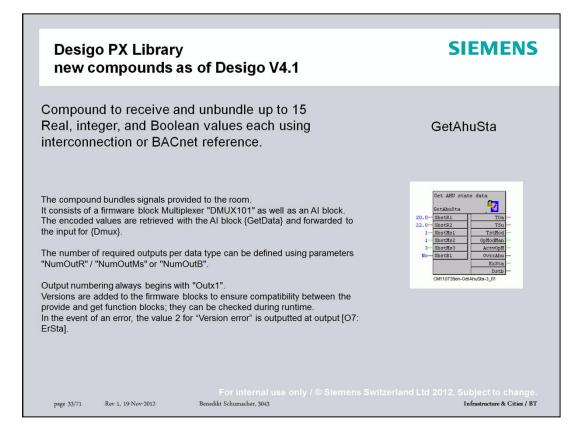

Sales documentation -> Display content, especially the numbers

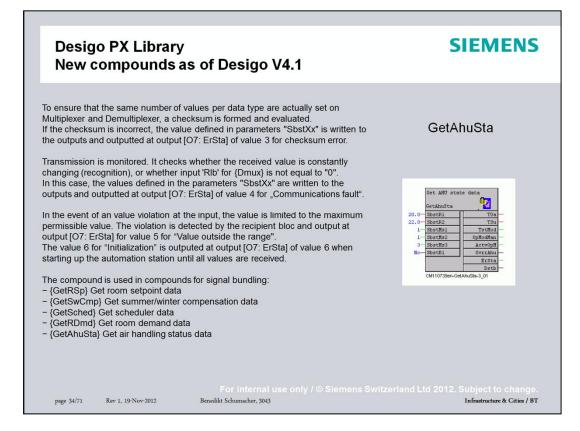

Demonstration application -> Start demo (explain elements, conventional, explain AirOptiCtl, simulation)

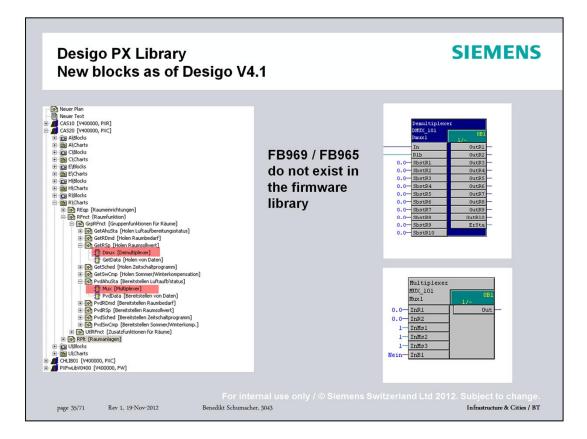

Overview of plant solutions

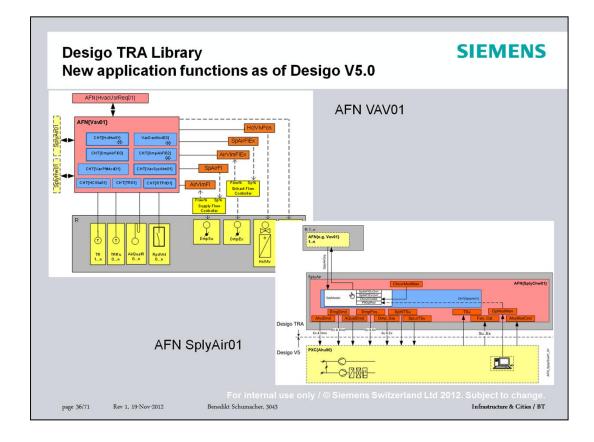

SIEMENS

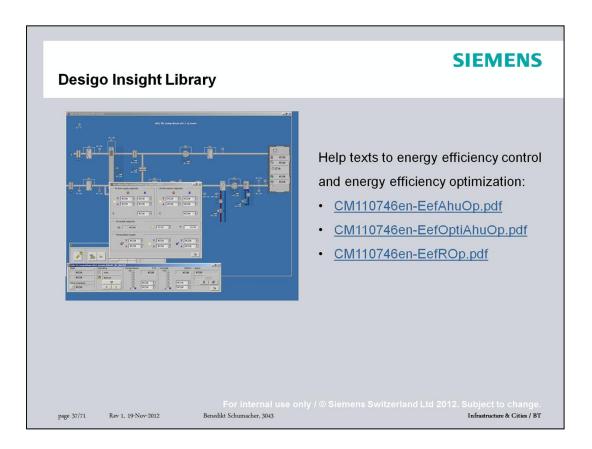
Plant	Number of rooms	Air quality control	Energy efficiency control	Energy efficiency optimization
{Ahu34}	1	Yes	No	No
Air handling, temperature and humidity control, AQ control, 1-stage/VSD, Room variables measures in the extract air (see Section 8)				
{Ahu35}	1	Yes	Yes	Yes
Air handling, temperature and humidity control, AQ control, 1-stage/VSD, room variables measured in the room (see Section 8)			Switch off the plant	Increased supply air temperature and increased outside air ratio depending on the situation during operation for plant runtime optimization
{Ahu80}-> Air handling, temperature and humidity control, AQ control, VSD	Up to 10 rooms, -> suitable for {RGrp10}	Yes	Yes Switch off the plant	No
{RDmdCtl11}	Resolved in TRA via	Yes	Yes	No
Coordination signals between {Ahu80} and TRA	{SplyAir}		Demand controlled from the rooms	
{RGrp10}	Up to 10 room,	Yes	Yes	No
VAV room control with/without radiator heating for up to 10 rooms and grouping functions	-> suitable for {Ahu80} and {HGrp65}		De-couple the rooms from the air handling unit (close VAV dampers)	
{RSltn10}	1 > mitchle for (on)	Yes	Yes	No
VAV room control with/without radiator heating	-> suitable for {RGrp10}, {Ahu80}		De-couple rooms from the air handling plant (close the VAV dampers)	

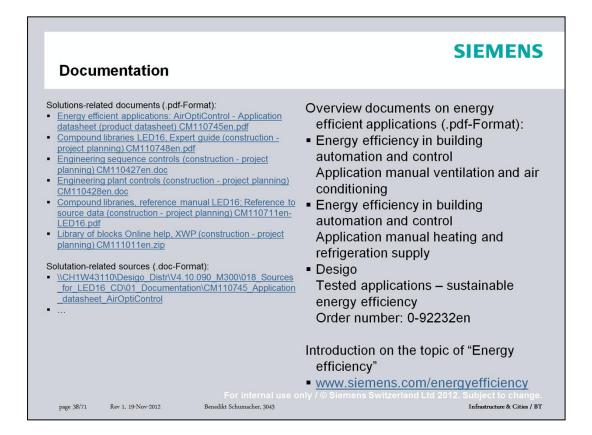


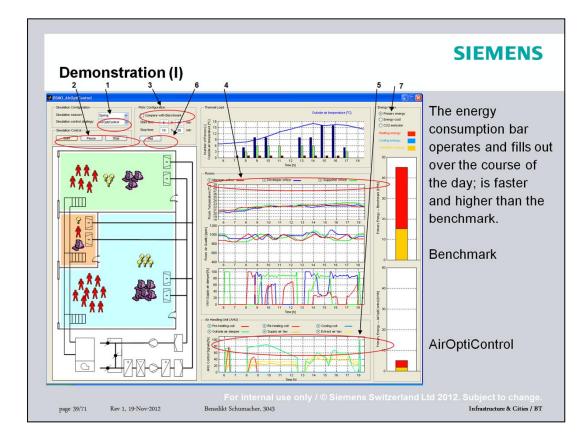





Link to reference manual LED15, s1277 (R / RFnct / GrpRFnct)


Desigo PX Library New compounds as of Desigo V4.1	SIEMENS
Input values are generally transmitted in sequence. If a change of value occurs at an input, the changed value is then transmitted with priority. In order to recognize a change of value for Real values, the change of value must be greater than the parameters COV. "COV" can be defined separately for each input.	PvdAhuSta
In the event a value is exceeded at the input, the value is limited to the maximum permissible value. The recipient block detects the violation and indicates it as an error. To ensure compatibility of provide and get function blocks, versioning is added to the firmware blocks which checks this during runtime. The compound is used in compounds for signal bundling: - {PvdRSp} Provide room setpoint data - {PvdSvCmp} Provide summer/winter compensation data - {PvdSched} Provide scheduler data - {PvdRDmd} Provide room demand data - {PvdAhuSta} Provide air handling status data	Provide AHU state PvdAhuSta 22.0 TOa 22.0 TSu 1 TStHod 1 OpModMan 3 Actv0pM No OvrrAhu CM110739en-PvdAhuSta-3_01
For internal use only / © Siemens Sw page 32/71 Rev 1, 19-Nov-2012 Benedikt Schumacher, 3043	




For help texts, see:

 $\label{eq:linear} $$ \ch1w43110.ww020.siemens.net\Desigo_Distr\V4.10.090_M300\044_TechDoc_ExpLevel_DVD\ContentLists\de\2004_insight.htm $$ \ch1w43110.ww020.siemens.net\ContentLists\de\2004_insight.htm $$ \ch1w43110.ww020.siemens.net\Designt.htm $$ \c$

Explain energy efficiency optimization

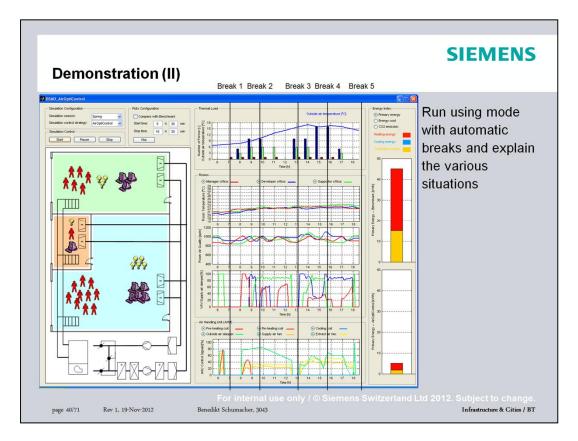
Link in document: Reference manual, expert guide, application datasheet

Online comparison (Demo 3):

Preparation:

- 1) Start Matlab: Start -> Programs -> Matlab -> R2006a -> Matlab R2006a
- 2) Open demo: Under "Current directory" on the Matlab menu bar, create the work folder: C:\Data\Demo
- 3) Start demo: In the "Current directory" pane, right-click file DEMO_AirOptiControl.m and click Run Alternative method: In the "Command window" pane, enter "DEMO_AirOptiControl" at the prompt and confirm with Enter
- Alternative method: In the "Command window" pane, enter "DEMO_AirOptiControl" at the prompt and confirm with Enter

Operating elements:


- 1 Configuration: Select benchmark or AirOptiControl. Both control strategies can be displayed individually or simultaneously. Caution: Both strategies can only be displayed in the "AirOptiControl" mode by selecting checkbox "Compare with Benchmark". This checkbox can be selected or cleared during or at the end of simulation
- 2 Start, Pause, Stop: You can pause and continue simulation be re-clicking pause
- 3 Checkbox "Compare with Benchmark": This check can be selected during or at the end of a simulation and compares results of both strategies in the "AirOptiControl" mode
- 4 Room data selection: The variables displayed, depends on selection. You can displayed just one room online by clearing the remaining rooms
- 5 Plant data selection: Same as 4
- 6 You can use plot to display a comparison curve at the end of simulation by selecting "Compare benchmark", if the simulation occurred using the "AirOptiControl" mode

Graphs:

- 1 Last, internal (people, light, devices) and external (outside air temperature)
- 2 Room temperature (heating setpoint = 21° C, cooling = 26° C)
- 3 Room air quality (setpoints occupied/comfort = 1000ppm)
- 4 VAV damper position (non-linear, i.e. 20% damper position equates to 50% volume flow)
- 5 Control of supply air fan, heating coils, cooling coils

Tip:

If little time is available, run the demonstration in the "AirOptiControl" mode and explain why the energy bars increase at various speeds. You can show/hide the benchmark comparison at any time in this mode

A break is planned at item 7:

Break 1 (shortly after 8:00): Plant start until room occupancy

Start procedure: Dampers open, fan on, room control activated

Conventional: Plant operates independent of room demand, dampers deploy to minimum position, since there little/no demand in the room for ventilation and air conditioning due to partial load in spring.

AirOptiControl: Plant operates for a brief moment, until the air quality setpoint is reached in the green room. The plant remained switched off on its own in the occupied red room. It only restarts after the air quality setpoint is exceeded in the red room.

Break 2 (10:00): Effect of volume flow coordination

Conventional: Air quality in all rooms is ok. The room is nevertheless ventilated and the supply air must be heated due to the cool morning outside air temperature.

AirOptiControl: Volume flow coordination: The supply air fan is controlled in the function of the VAV damper positions so that at least one VAV damper is open -> Impact on fan control: Less output required since less pressure is destroyed. Nice to see how first the red, then the blue, and finally the green room assumes fan control. A slight "boost" is enough to ensure air quality in the rooms. Slightly before 10:00, all the room require fresh air at the same time. The green room remains the lead variable for fan control.

 $\textbf{Break 3}\ (11:00):$ Individual rooms without temperature and air quality demand switch off

Conventional: No shut down.

AirOptiControl: Red room switches off shortly before 9:00 and 10:30 although occupied. The blue room switches off at 9:30 and 10:30 despite occupancy.

Break 4 (12:30): The entire plant switches off, since the room has no demand

Conventional: No switch off.

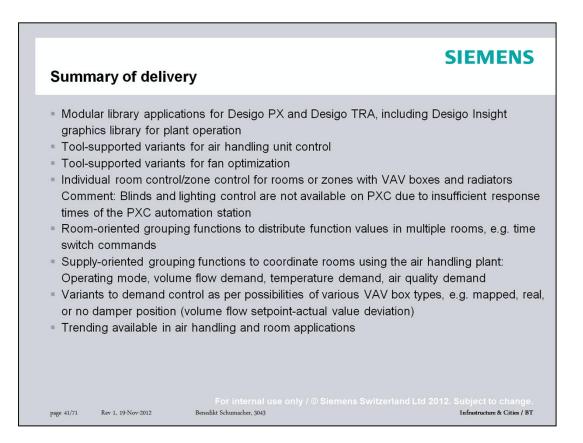
AirOptiControl: 12:30 to 13:00 the entire plant switches off, since no room has demand

Break 5 (5:00 pm): People from the green room go to the blue office

Conventional: No switch off.

AirOptiControl: At 3:00 pm, the AQ deteriorates in the blue room which now assumes control. The two other rooms switch off.

Break 6 (not implemented in this demonstration -> explain only):


Conventional: Supply air temperature is controlled dependent on room demand.

AirOptiControl: Temperature coordination: The supply air temperature is controlled in the function room temperature so that for temperature demand, the supply air temperature is first increased before being forced to increase the volume flow in the to room to maintain temperature. This keeps volume flow demand in the room to a minimum.

Break 7 (no implemented in this demonstration -> Explanation only):

Conventional: Outside air ratio depends on room demand.

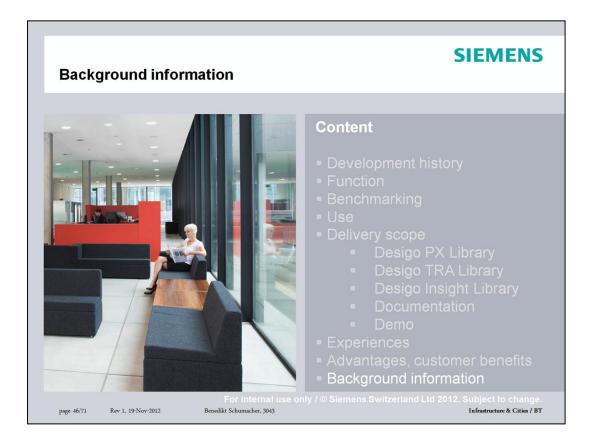
AirOptiControl: Air quality coordination: The outside air ratio is controlled in the function for room air quality and outside air temperature conditions to increase the outside air ratio for air quality demand. This keeps volume flow demand in the room at a minimum.

Schiffahrtsmuseum Husum, Schleswig Holstein.

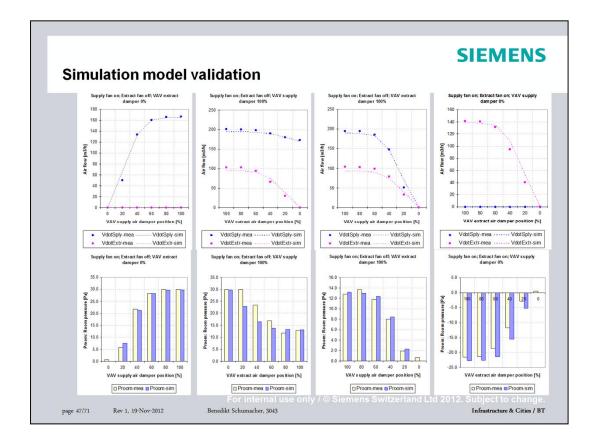
Museumhalle mit konserviertem Lastensegler.

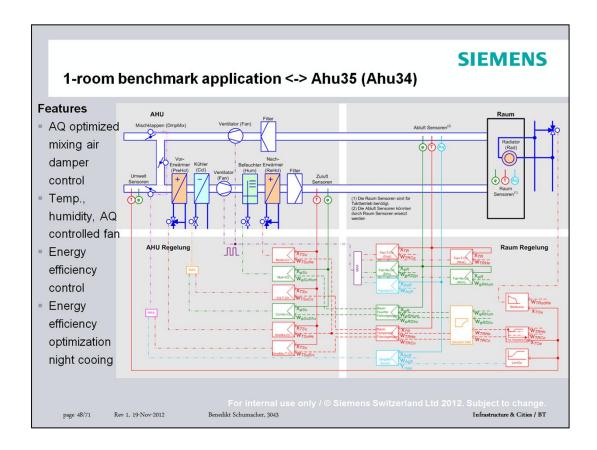
Die Energieeinsparung steht im Verhältnis zum erwarteten berechneten Energieverbrauch.

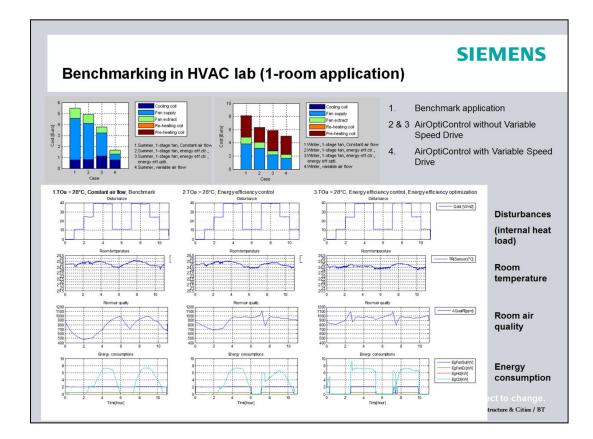
Enge Toleranzen und hoher Komfort gefordert.

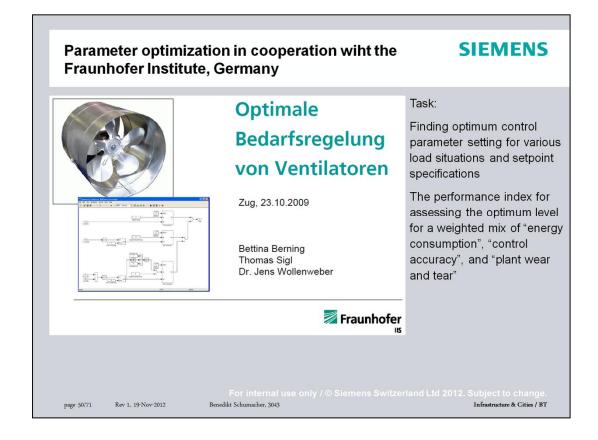

Guter und sehr energie-effizienter Anlagenbetrieb.

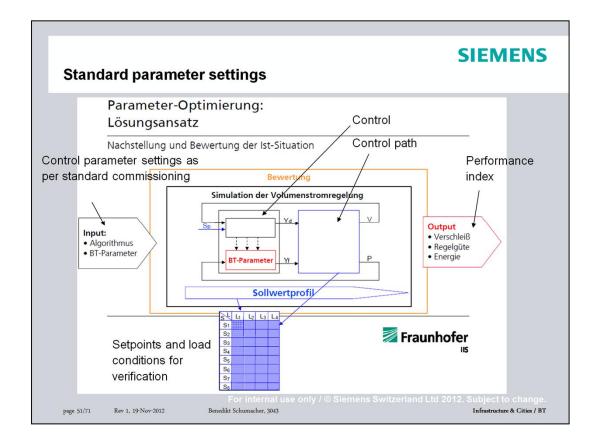
Economiser tx2 in Verbindung mit CO2-Regelung.

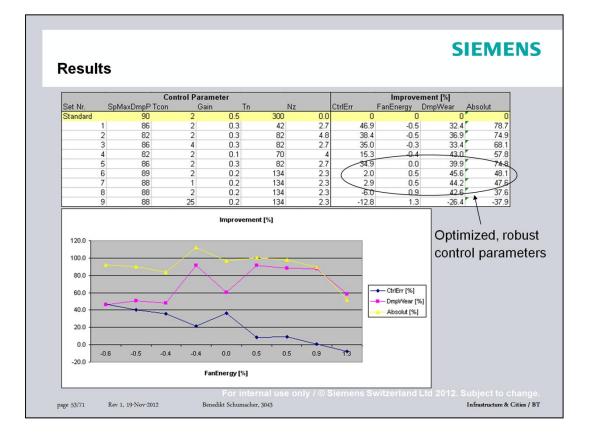

Die Anlage regelt das Klima zur Konservierung eines alten Schiffes (Lastensegler). Das Schiff wurde in eine Zuckerlösung getaucht und muss nun getrocknet werden.

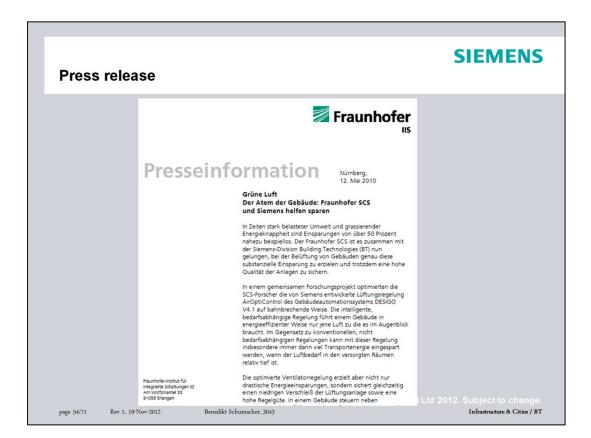


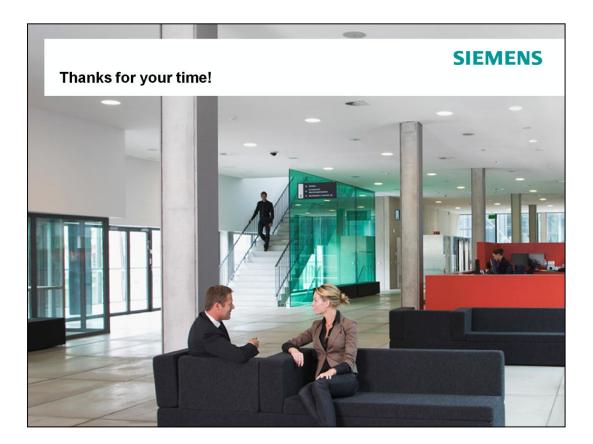

SIEMENS Advantages and customer benefits End customer Up to a 50% reduction in costs thanks to energy savings - Lower maintenance costs thanks for energy savings of up to 50% versus a conventional demand-controlled VAV plant • "Energy Efficiency Control" with potential for maximum energy savings while operating ventilation and air conditioning plants with one or up to 10, or "n" rooms - Higher level of investment protection thanks to pan-European standardized energy efficiency class A System house Understandable arguments based on benchmark results Modular, designed standard library applications including graphics for plant operation using DESIGO INSIGHT for easy engineering and commissioning Documented application to provide excellent service after Yeshren Planners, architects, energy consultants Meets European standard EN 15232 in class A Permits ecological consulting and applications with lower emissions Convincing arguments for excellent advertising and customer relations Supports innovative building concepts For internal use only / © Siemens Switzerland Ltd 2012. Subject to cha Benedikt Schumacher, 3043 Infrastructure & Cities / BT page 45/71 Rev 1, 19-Nov-2012

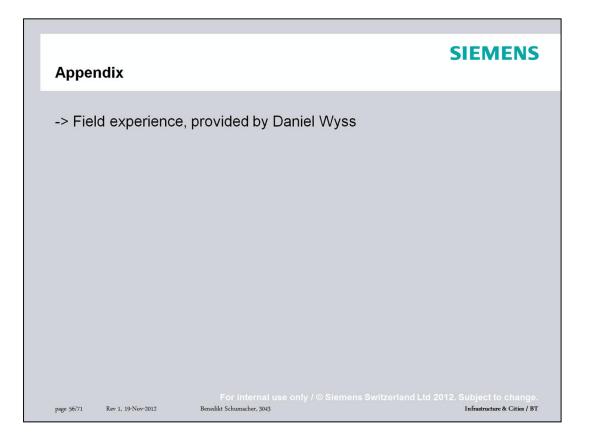


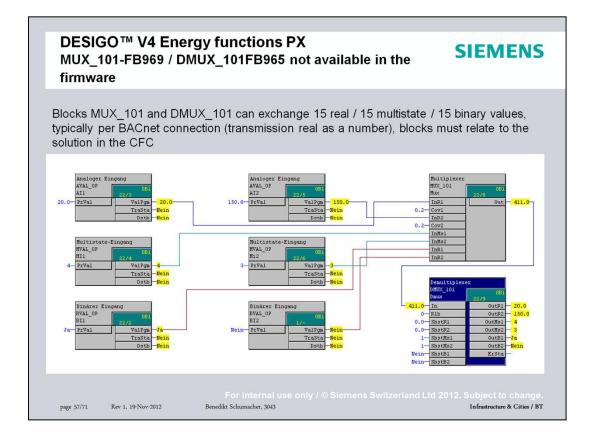

Hintergrundinformationen: Parameteroptimierung mit Fraunhofer, Simulationsinfrastruktur

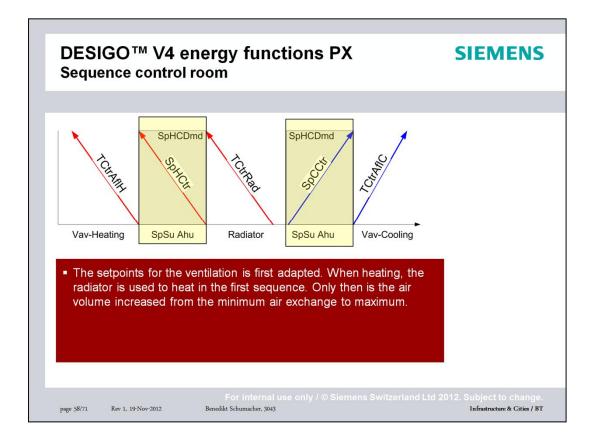


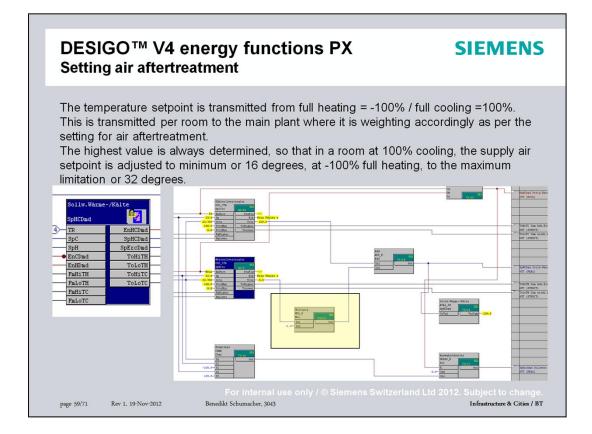


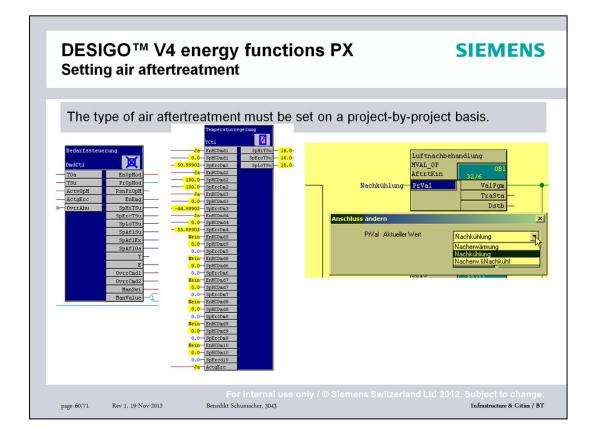


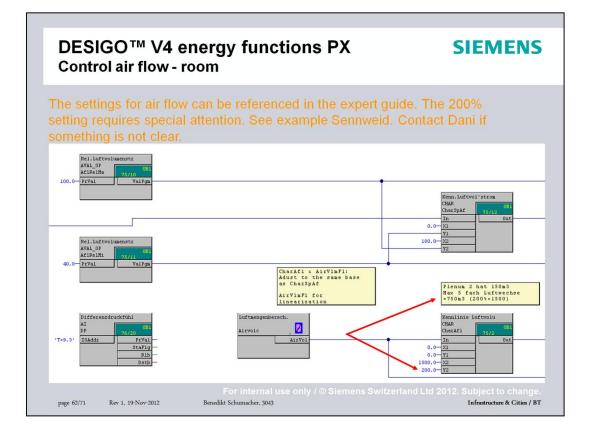


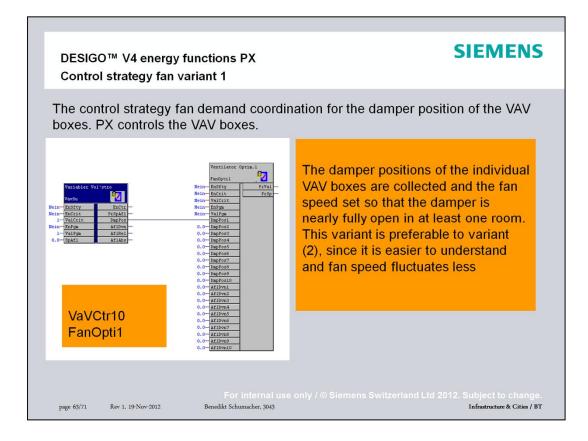


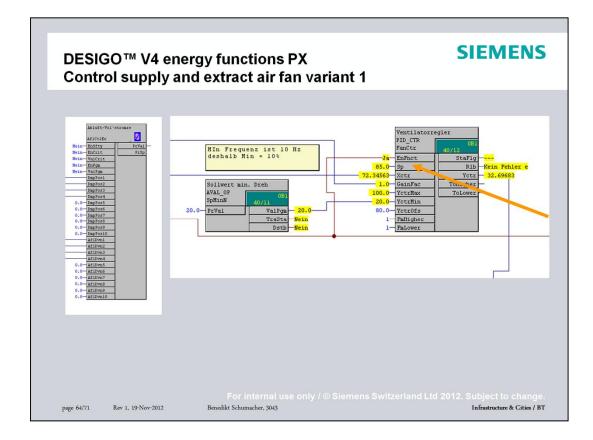


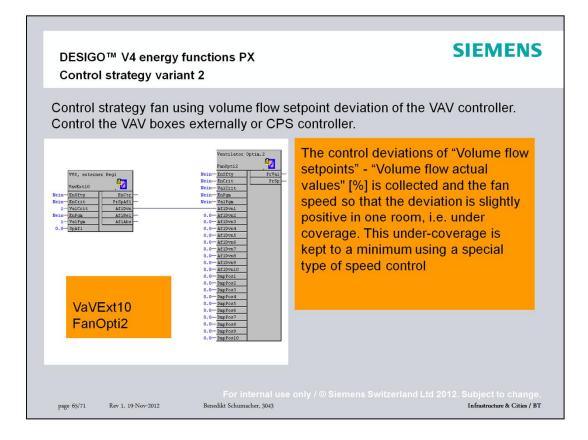


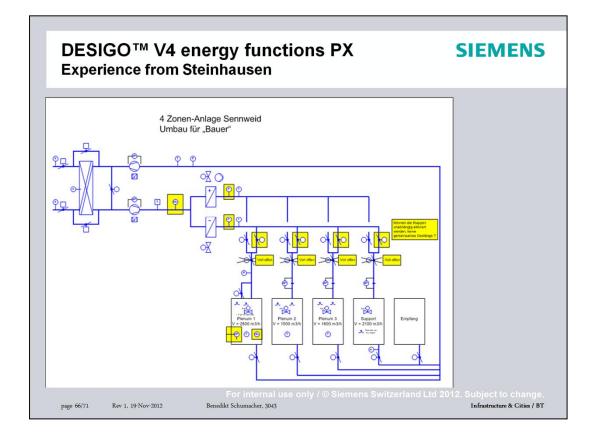


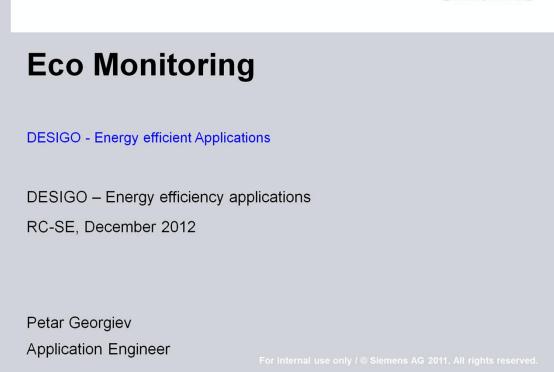


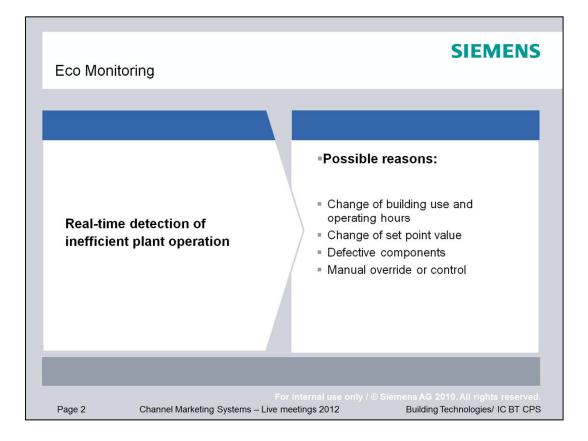


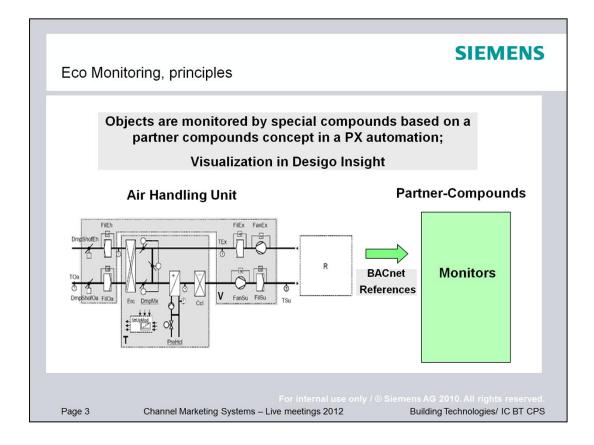




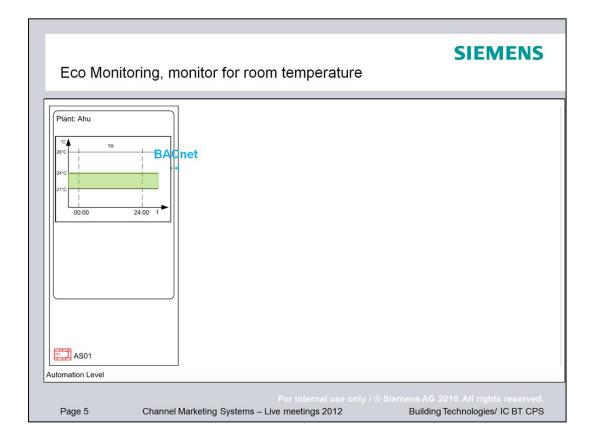

	O™ V4 e air aftertre	energy functions PX eatment	SIEMENS
supply ai		reatment must be set on a project-by- re setpoints are determined differently nent.	
		oom, you can (re)heat. Cooling dema demand.	nd has priority in a
		oom, you can (re)cool. Heating dema demand.	nd has priority in a
In the roo		bling: boom, there is (re)heating and (re)cool ad for a conflict between heating and o	
page 61/71 Re	v 1, 19-Nov-2012	For internal use only / © Siemens Switzerla Benedikt Schumacher, 3043	and Ltd 2012. Subject to change Infrastructure & Cities / B'

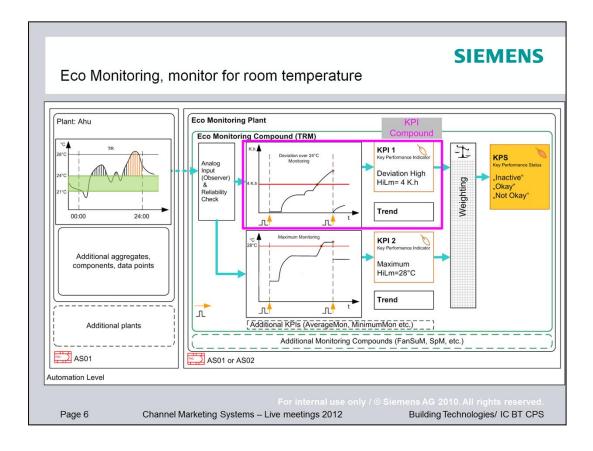


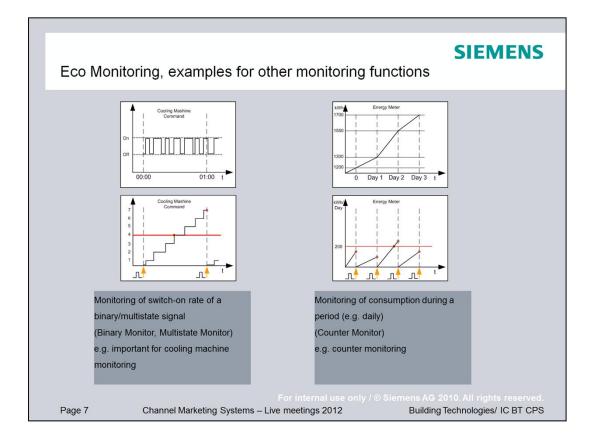


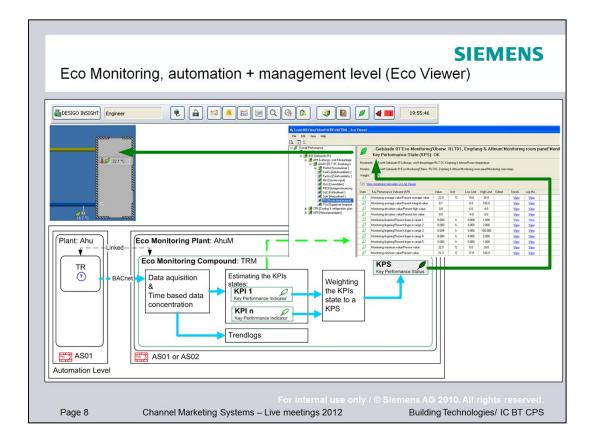


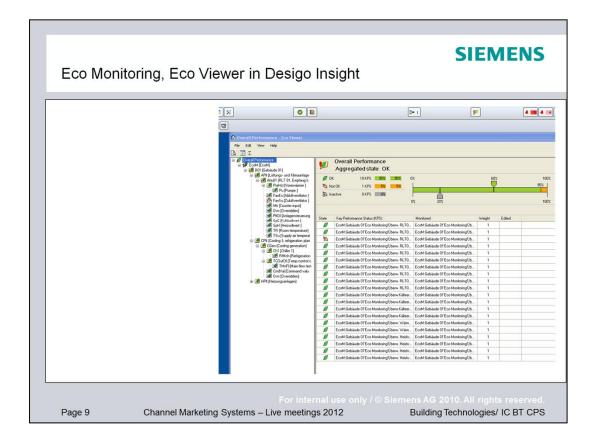
DESIGO™ V4 er Experiences from S	nergy functions PX Steinhausen	SIEMENS
Additional expense by renovation	 No standard plant, 2-duct with changeou No installation of air velocity sensors du expensive and very difficult to find the m Controlling air dampers is difficult to say Old faults are often discovers during ren etc. Adapt main functions to CHLIB functions converters Install presence detectors Solution learning curve 	e to VAV; relatively neasuring points. / the least. novation, i.e. faulty dampers,
Overal	Il impression is ex	cellent
page 67/71 Rev 1, 19-Nov-2012	For internal use only / © Siemens Switzerla Benedikt Schumacher, 3043	and Ltd 2012. Subject to change. Infrastructure & Cities / BT

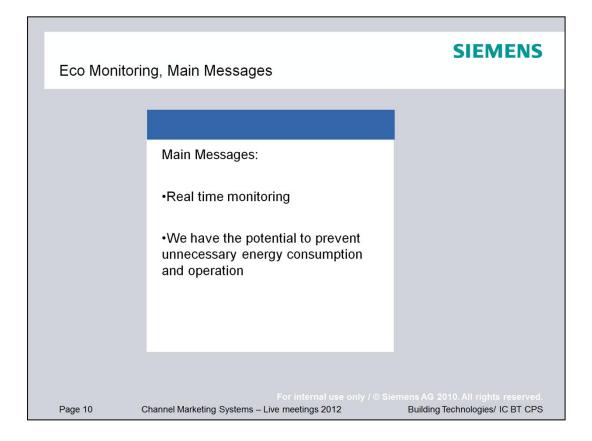


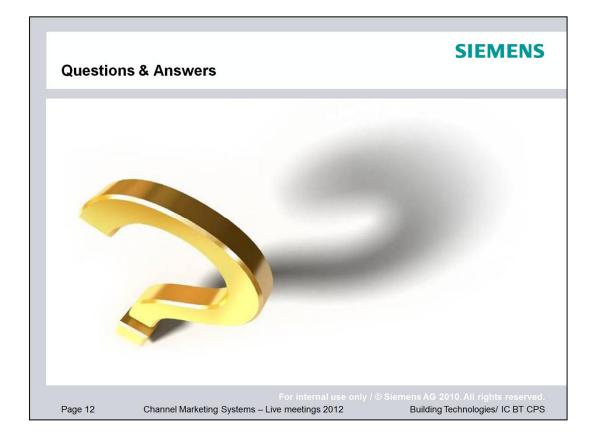


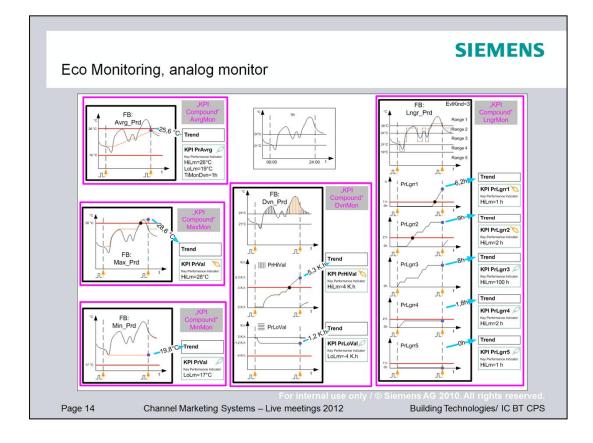



New or existing plant is monitored. The only connection between the monitored plant plan and the monitors are BACnet references.


	[
Initial check: Decision: What should be monitored? Hew? Setting up the innit:?	XWorks Plus/CFC: -Choosing and linking of a proper monitor (out of a library) - Setting options and variants (which and inter.)	CFC: Setting up the limits If needed: programming of additional logic (e.g. dynamic limits, some dependencies)	Desigo Insight: Eco Viewer: Changing the limits Plant Viewer: Displaying monitoring states on plant graphics







Eco Mon	itoring, Demo	SIEMENS
Page 11	For internal use only / ⊚ Channel Marketing Systems – Live meetings 2012	Siemens AG 2010. All rights reserved. Building Technologies/ IC BT CPS

Г

Eco Mon	itoring, library PXC MON01	SIEMENS
Library: (Genera	l part)	
•10 new Firmwar	reBlocks	
• 4 Basic Monitor	ring Compounds: Amon, Bmon, MsMon, CntMon	
Compatible to C	AS Library:	
•about 70 Eco M	onitoring Compounds	
• 7 Eco Monitorir	ng Plants	
D		ens AG 2010. All rights reserved.
Page 13	Channel Marketing Systems – Live meetings 2012	Building Technologies/ IC BT CPS

h,x – control **Economizer tx2**

Demand optimized operation of energy recovery

DESIGO - Energy efficiency applications

RC-SE, December 2012

Author:

Benedikt Schumacher, 3043

Revision: Document Status: 1, 19-Nov-2012 Approved - valid without signature

	ision Hist	,	
Rev	Date	Author	Changes, Comments dh1 Status=Freigegeben - ohne Unterschrift gültig
1	19-Nov-2012	Benedikt Schumacher	Status=Freigegeben - ohne Unterschrift gültig

Bild 2

- dh1 How to remove or insert table rows?
 - right mouse click
 - Delete Rows
 - Insert Rows (befor the selected row)

Use Toolbox > Template Setup to update a template and the revision history for the template. Donat Hutter; 2008-02-29

Development history (I)

1977: Enthalpy control (state of the art)

- Enthalpy strategy for energy recovery
- Temperature and humidity control with uncoordinated neutral zones

1993: Cost scale line cooling/steam (Baumgarth)

Improvement to the enthalpy strategy when using modulating controlled steam humidifiers

1996: tx2 (Staefa Control Systems)

- Simulation-based development of an optimized solution for energy recovery control
- Integrated approach replaces enthalpy strategy
- Coordinated setpoint calculation within the comfort field
- Energy recovery strategy in the tx level is outside any control sequence
- Patent registered

1997: Integral RS

 Economizer tx2 for Integral RS, implemented based on the cascade sequence controller standard by Staefa Control Systems

page 5/47 Rev 1, 19-Nov-2012

Benedikt Schumacher, 3043

Infrastructure & Cities / BT

Development history (II)

1998: Visonik (I)

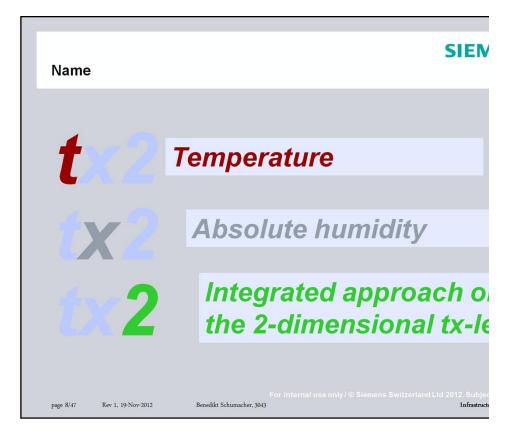
 Economizer tx2 for Visonik, implemented based on cascade sequence controller standard by Staefa Control Systems

1999: Unigyr

 Economizer tx2 for Unigyr, implemented using the Unigyr cascade sequence controller

2000: Visonik (II)

 Economizer tx2 for Visonik, implemented using Visonik cascade sequence controller


2003: Desigo V2.2

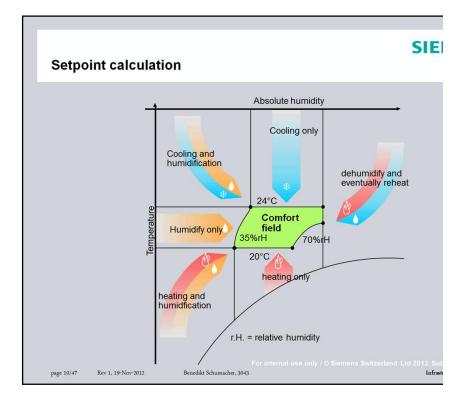
 Economizer tx2 for Desigo PXC, implemented using Desigo cascade sequence controller, energy recovery position calculation using existing FW library blocks, no delivery with the HQ library

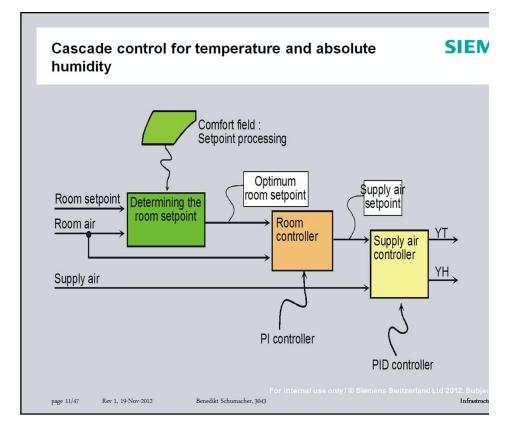

30.03.2009: Desigo V4.0

- Economizer tx2 for Desigo PXC, implemented using Desigo cascade sequence controller and new blocks to calculate energy recovery position
- Cockpit for online monitoring of the function applying model-based energy ango.
 Infrastructure & Cities / BT
- age 6/47 Rev 1, 19-Nov-2012 Benedikt Schumächer, 3043 Infrastructure & Cities / BT Consumption calculations for conventional energy recovery control strategies

The break out of t-x-2

- 1. Comfort field: The **Economizer tx2** operates the air conditioning so that the room temperature and room humidity is always within the comfort field.
- 2. Setpoint processing: Using the comfort field, the setpoint processing module in the Tx2 calculates the optimum setpoints for control.
- 3. Control: This module controls energy use on the plant.
- Energy recovery strategy: This module evaluates energy use on the plant to calculate the optimum use of energy recovery. The module considers the real energy cost situation using weighting factors.

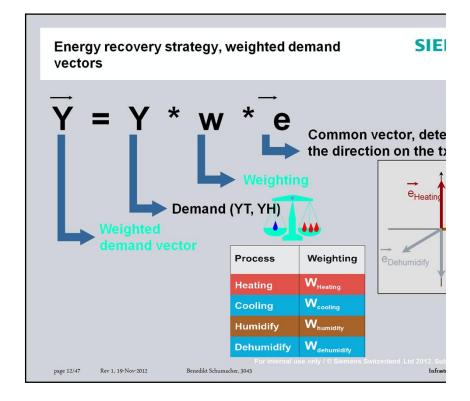

Summary:


The Economizer tx2 optimizes plant operation by

(1) Taking advantage of the comfort field as much as possible – but not at the expense of comfort

(2) The outside air is precondition using energy recovery to minimize energy costs.

Traditional control is unable to operating the plant in such an uncompromising manner.



Cascade control

Separate cascade controller for temperature and absolute humidity

Calculate demand signals YT and YH

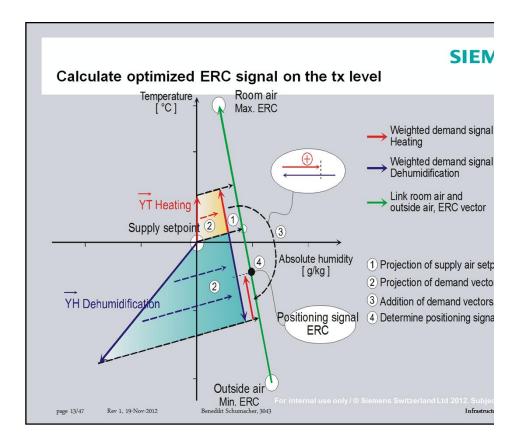
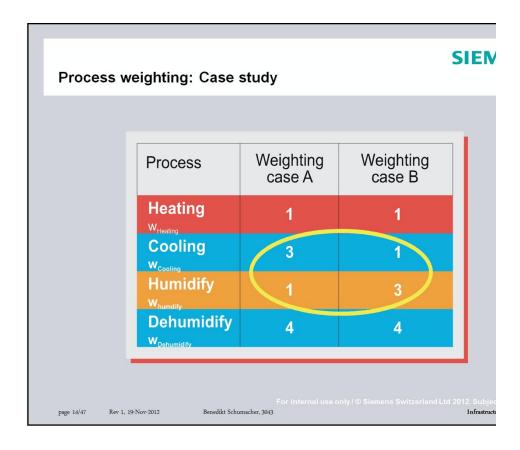
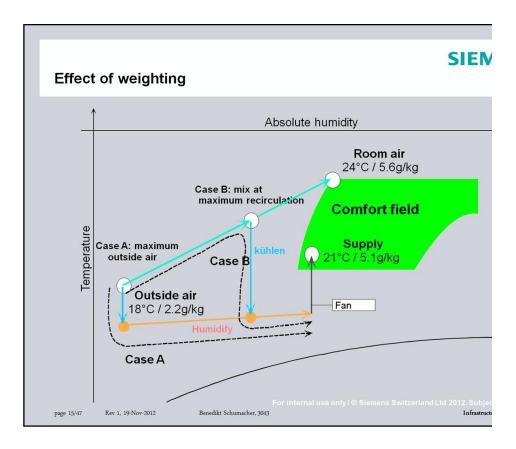



Illustration of tx2 ERC strategy

Starting point:

Warm, dry weather, room-side increase in temperature and humidity; on the plant side cooling and humidity demand

Case A:

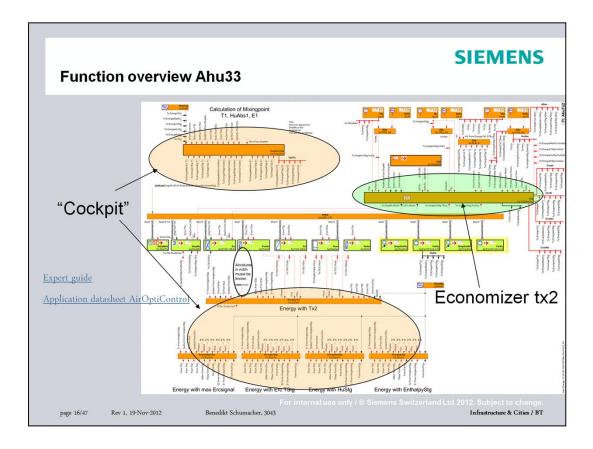

Cooling with expensive refrigeration machine, humidification using inexpensively generated vapor

Case B:

Cooling using lake water, humidify using vapor

Weighting:

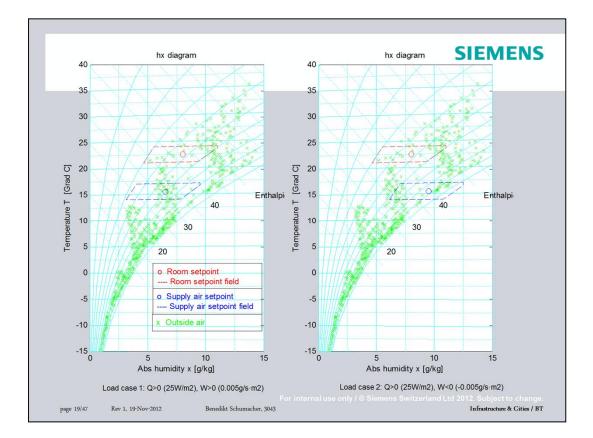
The table outlines consideration of energy costs

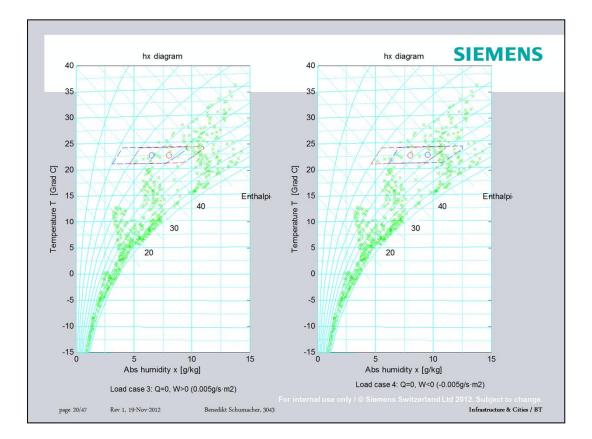


Case A:

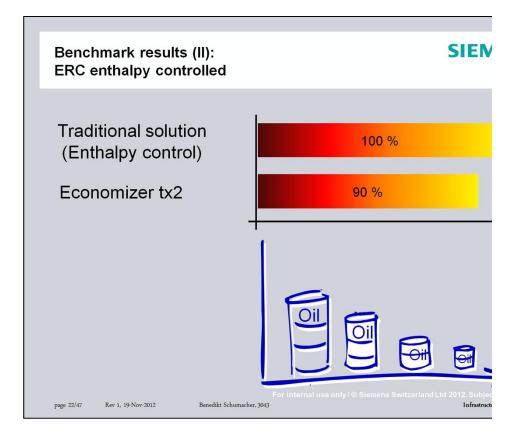
The expensive cooling process is relieved to optimize overall costs by operating the air conditioning unit at maximum outside air

Case B:


The cheap cooling process is used in support of optimizing overall costs by operating at maximum energy recovery

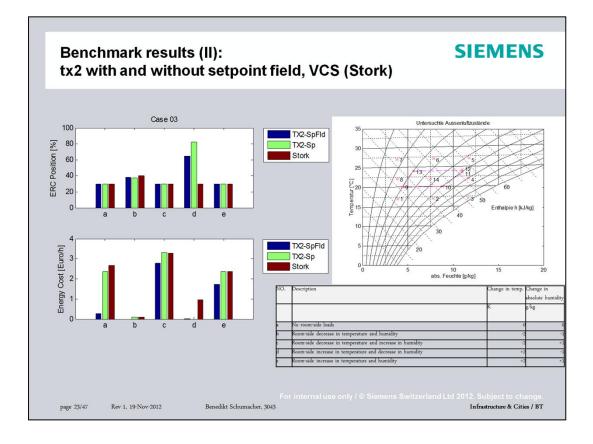


Present Visio


Be	enchmarking with simulation, key values	SIEMENS
A/C	plant:	
Full	A/C plant or plant with heating, cooling, humidification	
Poi	nt control:	
Roo	m setpoint 22.5°C, 45% r.H.	
Set	point field control:	
Roo	m setpoint field 22.5±1.5°C, 45±15% r.H.	
We	ather:	
Cer	tral Switzerland	
Equ	ipment:	
Stea	am humidifier, heating coils (centralized heat production, natural gas)	
Con	npressor refrigeration plant (centralized)	
Roc	m load:	
1.	Q>0 (25W/m2), W>0 (0.005g/s·m2)	
2.	Q>0 (25W/m2), W<0 (-0.005g/s·m2)	
3.	Q=0, W>0 (0.005g/s·m2)	
4.	Q=0, W<0 (-0.005g/s·m2)	

Benchmark results (I): ERC in temperature sequence

Setpoint field + Setpoint field + Load conventional ERC control TX2 ERC control (ERC in temperature sequence) Q: Heat load Annual savings potential compared to Additional annual savings potential compared to W: Humidity point control in [%] "Setpoint field + conventional ERC control" in [%] load Q>0 10%-15% ca. 75% W>0 Q>0 1%-2% ca. 45% W<0 Q=0 ca. 55% 4%-8% W>0 Q=0 ca. 35% 1.5%-5% W<0 page 21/47 Rev 1, 19-Nov-2012 Benedikt Schumacher, 3043 Infrastructure & Cities / BT


Basis for comparison:

The comparison is based on the results of the simulation


Simulation

Real weather from a weather station (here: Zurich)

Operating hours: Daily from 7 am to 7 pm

<image><image><section-header><image><image><image><section-header><section-header><image>

Suchen Sie eine Regelprogramm für eine Klimaanlage mit den Prozessen Heizen, Kühlen, Dampf- oder adiabatischer Befeuchtung (z.B. Wäscher), sowie Entfeuchten und beliebigem Energierückgewinnungssystem?

Und muss die Anlage die Raumtemperatur und Raumfeuchte innerhalb eines Behaglichkeitsfeldes im h,x-Diagramm dynamisch regeln, um optimale Arbeits- bzw. Prozessbedingungen zu gewährleisten?

Und ist Ihnen die Optimierung des Energieeinsatzes oder der Energiekosten von Bedeutung?

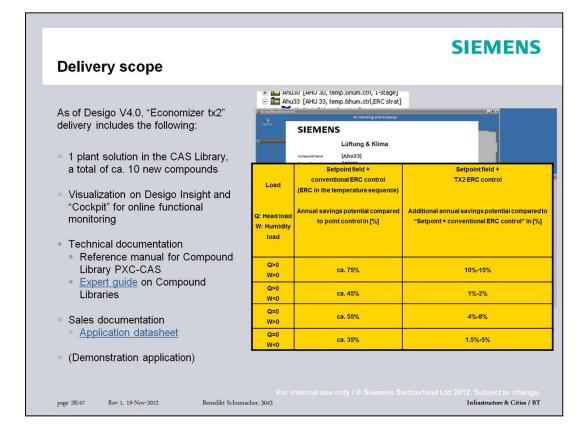
Erfinden Sie keine neue Lösung, brauchen Sie den Economiser tx2 !

Coverage

Plant with steam humidification?

Are covered. Less expensive process steam can be considered in the weighting factors and result in an advantage for Tx2 under certain circumstances.

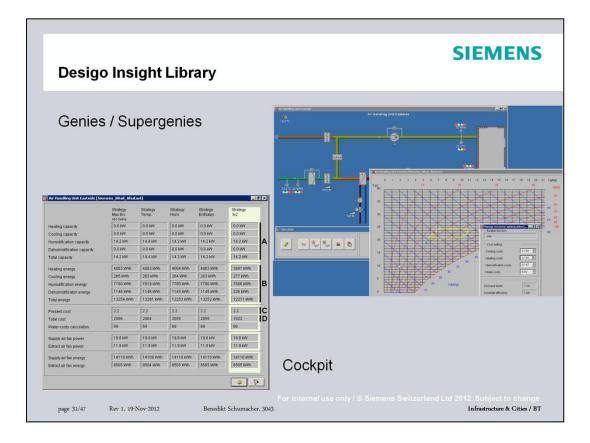
tx2 with a complete heat recovery plant?


Is not covered. One requirement is that ERC does not cause relevant costs compared to the thermal air handlings with heating coils, cooling coils, and humidifier.

page 26/47 Rev 1, 19-Nov-2012

Benedikt Schumacher, 3043


For internal use only / © Siemens Switzerland Ltd 2012. Subject to change. Infrastructure & Cities / BT



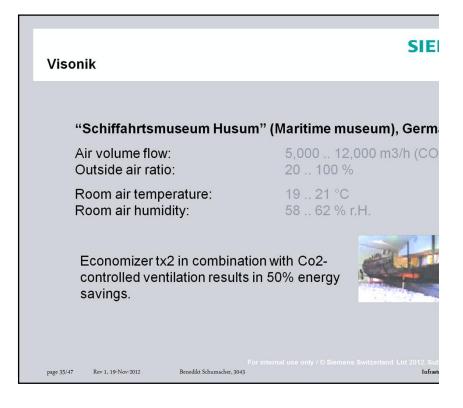
Demonstration application operates only with Matlab license

-	esigo PX Library ew compounds as of Desigo V4.0		
Tx2MxeCho EgCalc EgWg CostWCalc	tx2 Maximum-Economy changeove EgCalc Energy and output calculati Energy weighting Water cost calculation		
page 29/47 Rev 1, 19-Nov-2012		Switzerland Ltd 2012. Subject to change. Infrastructure & Cities / BT	

Documentation	SILIVILIUS
 Solutions-related documents (.pdf format): \\ch1w43110.ww020.siemens.net\Desigo_Distr\V5. 00.201_M300\038_Desigo V5.0 Documentation Expert_Edition\Desigo\DESIGO_xx\CM110745de- TX2.pdf Compound libraries LED16, Expert guide(construction – Project planning) CM110748en.pdf Engineering sequence control(construction - Project planning) CM110427en.doc Engineering of plant controls (construction - Project planning) CM110428en.doc Compound libraries, reference manual LED16; Reference to source data(construction - Project planning) CM110711en-LED16.pdf Library of block online help. XWP(construction - Project planning) CM111011en.zip Solutions-related sources (.doc-Format): 	 Overview of documentation on energy efficient applications (.pdf format): Energy efficiency in building automation and control Application manual ventilation anhd air conditioning Energy efficiency in building automation and control Application manual heat and refrigeration supply Desigo Tested application – sustainable energy efficiency Order number: 0-92232en
 \\CH1W43110\Desigo_Distr\V4.10.090_M300\018_ Sources_for_LED16_CD\01_Documentation\CM11 0745_Application_datasheet_tx2l 	Introduction link on the topic of "Energy efficiency"
For in page 32/47 Rev 1, 19-Nov-2012 Benedikt Schumacher, 3043	<u>WWW.Siemens.com/energyefficiency</u> ternal use only / © Siemens Switzerland Ltd 2012. Subject to change. Infrastructure & Cities / BT

Link in document: Reference manual, expert guide, application datasheet

Integral RS	SIE
"Druckerei Ziegler": Print sho	op in Winterthur, Switzerlar
Туре:	Source ventilation
Air volume flow: Outside air ratio:	50,000 m3/h (3-stage 20 100 %
Room air temperture: Room air humidity:	20 26 °C +/- 2 K 45 55 % r.H. +/- 10% r.
Minimum supply air temp.: Maximum difference between Room and supply air temp.:	16 °C 6 K
For in page 34/47 Rev 1, 19-Nov-2012 Benedikt Schumacher, 3043	nternal use only / © Siemens Switzerland Ltd 2012. St Infra


Ziegler Druck in Winterthur Schweiz.

Klimatisierte Halle für Grossdruckmaschinen Rotations-Rollenoffset, in Betrieb seit Sept. 1997.

Kommentar des technischen Verantwortlichen:

Einfach Anlagenbedienung und gutes Anlagenverhalten - die Anlage arbeitet ohne manuelle Eingriffe, wie das bei den anderen konventionell betriebenen Anlagen im gleichen Gebäude häufig der Fall ist.

Einbindung der adiabatischen Kühlung.

Schiffahrtsmuseum Husum, Schleswig Holstein.

Museumhalle mit konserviertem Lastensegler.

Die Energieeinsparung steht im Verhältnis zum erwarteten berechneten Energieverbrauch.

Enge Toleranzen und hoher Komfort gefordert.

Guter und sehr energie-effizienter Anlagenbetrieb.

Economiser tx2 in Verbindung mit CO2-Regelung.

Die Anlage regelt das Klima zur Konservierung eines alten Schiffes (Lastensegler). Das Schiff wurde in eine Zuckerlösung getaucht und muss nun getrocknet werden.

Schiffahrtsmuseum Husum, Schleswig Holstein.

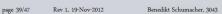
Museumhalle mit konserviertem Lastensegler.

Die Energieeinsparung steht im Verhältnis zum erwarteten berechneten Energieverbrauch.

Enge Toleranzen und hoher Komfort gefordert.

Guter und sehr energie-effizienter Anlagenbetrieb.

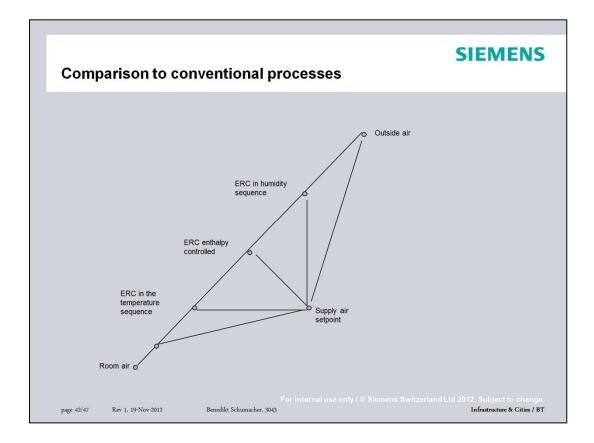
Economiser tx2 in Verbindung mit CO2-Regelung.


Die Anlage regelt das Klima zur Konservierung eines alten Schiffes (Lastensegler). Das Schiff wurde in eine Zuckerlösung getaucht und muss nun getrocknet werden.

<image><image><section-header><image><image><section-header><section-header><section-header><section-header><list-item><list-item><list-item><image>

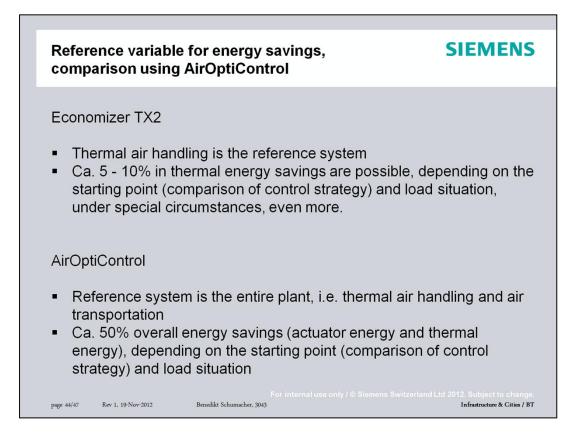
<image><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><section-header>

Customer benefits


- Suitable for existing plants, since the optimization can be achieved using purely control-technical measures without costly modifications to plant hardware
- Reduction in costs for air conditioning without a loss of comfort. Costs may include energy consumption, energy costs, CO2 emissions, etc.
- Cost-optimization by considering energy rates
- Concrete means for sustainable reductions in CO2, thanks to energy savings
- Versus individual optimization solutions, time and cost savings during engineering, commissioning, and operational phases as well as lower service costs thanks to tested applications and detailed documentation
- Meets EN 15232 at the highest energy class and increases the value of the plant for any future sale of the building

For internal use only / © Siemens Switzerland Ltd 2012. Subject to change. Infrastructure & Cities / BT

Why is tx2 better? Where do the savings come from?	SIEMENS			
 Outside the sequence Meighting factors 				
Weighting factorsTaking advantage of the setpoint field				
 Modulating process, without the typical hysteresis for ERC control action changeover 				
 Absolute humidity control 				
For internal use only / © Siemens Switzer page 41/47 Rev 1, 19-Nov-2012 Benedikt Schumacher, 3043	land Ltd 2012. Subject to change. Infrastructure & Cities / BT			


SIEMENS **Example situation 1** Very low heat load, negative humidity load Outside air temperature below the room heating setpoint 1) ERC in the temperature sequence: Supply air Heating required -> ERC goes to maximum room air, since room minimum is higher than outside air. This creates a room state Room air Outside air as shown in the lower left-hand corner 2) tx2: Minimum heat demand and medium humidity demand -> more (max) outside air is take. This draws down the humidity demand. NO humidifying required! Nearly Supply air setp. X 100% savings in humidity output at nearly Room air Outside air the same heat output Rev 1, 19-Nov-2012 Benedikt Schumacher, 3043 Infrastructure & Cities / BT page 43/47

2) At that moment where the ERC takes on 100% outside air, the sequence switches from humidify to dehumidify.

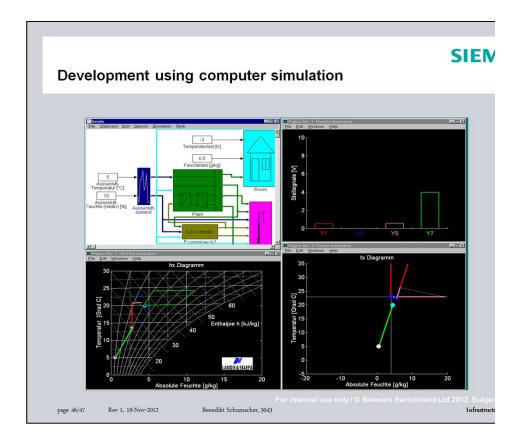
While the supply air-humidity demand declines in the sequence, the room temperature moves to the right. This moves the supply air setpoint humidify toward minimum supply air humidity and moves the ERC position in the direction of room air due to the declining supply air humidity demand.

Balance is achieve as soon as the supply air temperature demand corresponds to the (virtual) humidity demand

Time series images: Starting point at max room air mixing, transition, balance.

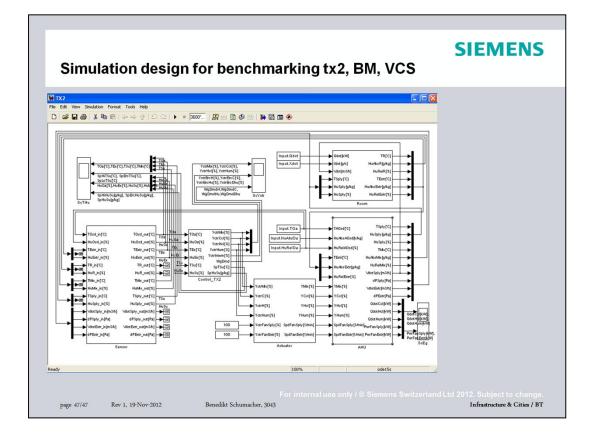
SIE

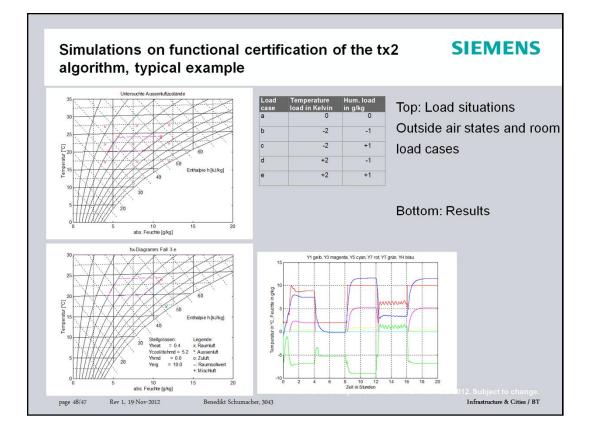
Infrast


Summary

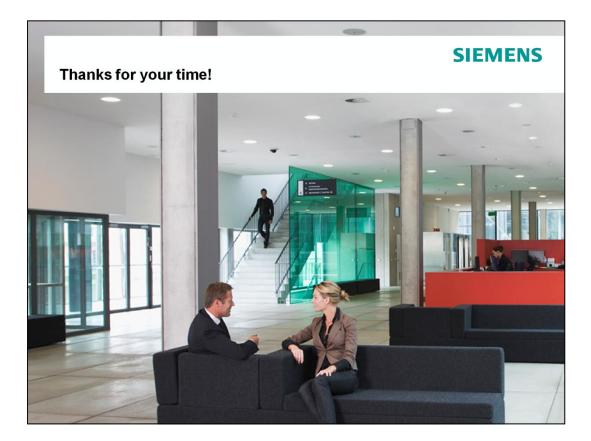
 Minimize energy consumption, costs, or CO2 through optimun control of energy recovery.

ERC controls outside the control sequences; weighting factors setpoint within the comfort field are optimized dependent on the active process in the air handling unit)


- Modulating process, without the typical hysteresis for ERC con action changeover
- Absolute humidity control, i.e. improved control quality through coupling temperature and humidity
- Control cockpit, i.e. the energy consumption of conventional E control process is calculated against idealized processes as a comparative variable to tx2 and can be displayed in a prepare
- Meets CEN standard for h,x-control
- Available in DESIGO as of version 4.0

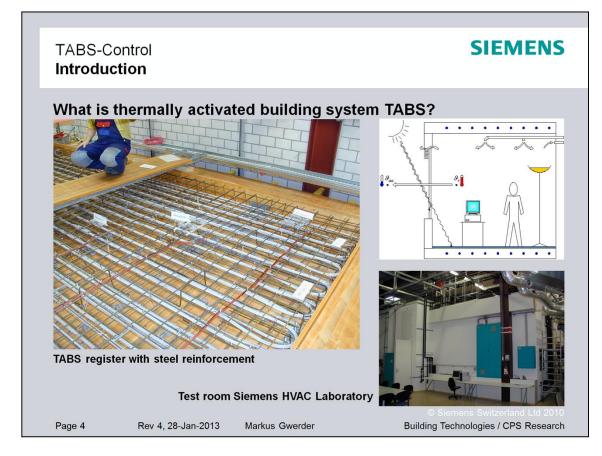

page 45/47 Rev 1, 19-Nov-2012 Benedikt Schumacher, 3043

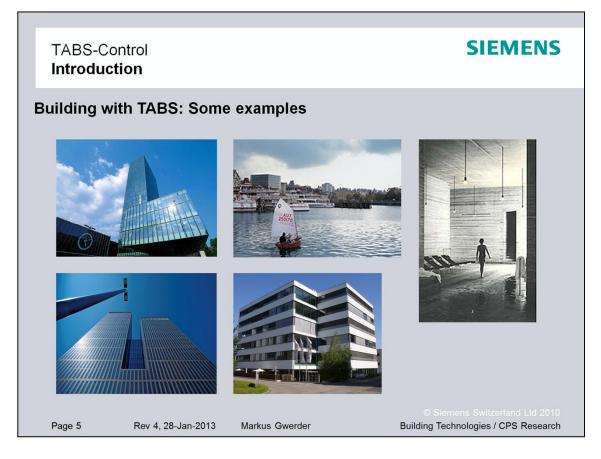
Development environment


The simulation package MATLAB/Simulink was used to develop the Economizer tx2 algorithm

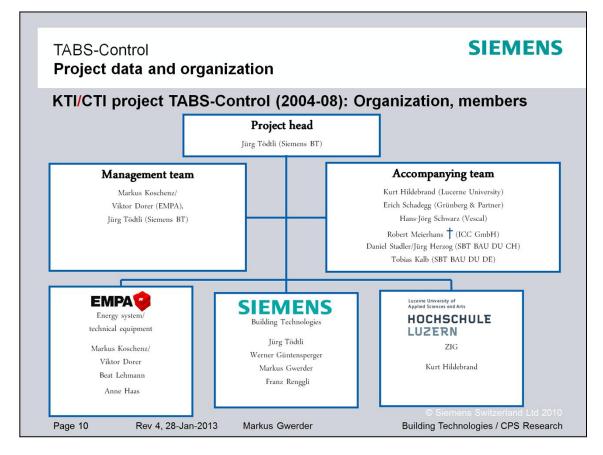
SIEMENS

Questions
Function principle?
For what plants is it suitable?
Energy savings potential?
Where in the hx-diagram is tx2 better?
How are current setpoints displayed?
Does it make sense to remodel existing plants (expense/payoff)?
What does a plant with steam humidification look like (Chemie Basel has available factory steam)?
Where is tx2 better than a conventional CAS solution with setpoint field and now much better (energy savings in %)?
tx2 with complete HRC plant?


Text


<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text>

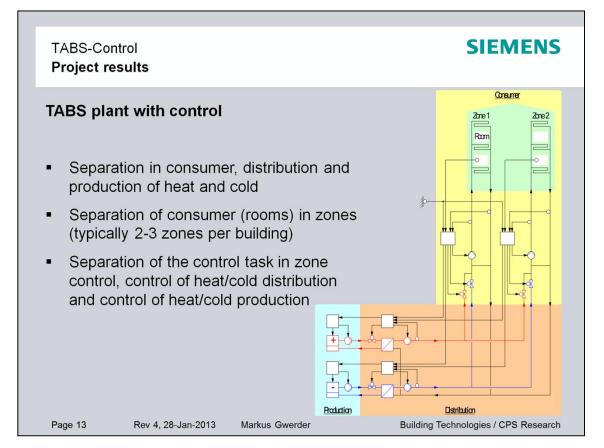
TABS-C Content			SIEMENS
= Introdu	cing TABS contro	I	
- Projec	I project TABS co ct data and projec ct results		
 The Siemens BT TABS control solution in Desigo Delivery Function Benefits Demo (Matlab/Simulink simulation) 			
 The Siemens/Empa planning tool TABSDesign Introduction Demo 			
Question	ons and discussio	n	
Page 2	Rev 4, 28-Jan-2013	Markus Gwerder	© Siemens Switzerland Ltd 2010 Building Technologies / CPS Research

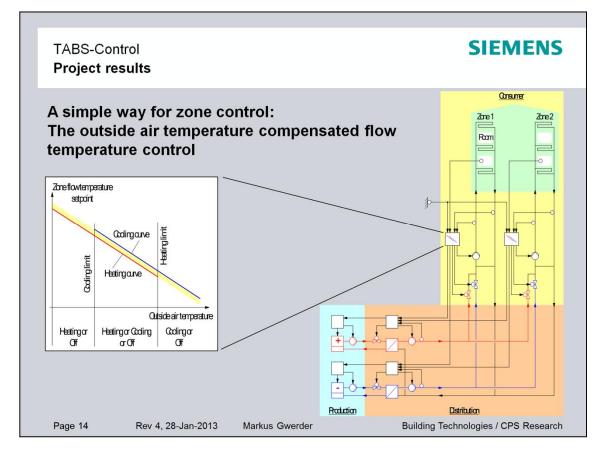

TABS-C Introduc			SIEMENS
TABS b	enefits		
Low ter		al sources of energy s between flow and r	
Low ter ⇔ Simp		flow and room tempontrol-technical soluti	eratures ions (no individual room
Large ti heat/ret ⇔ Ener	nermal storage capa rigeration demand a	nd heat/refrigeration	its a time-based separation of
Page 6	Rev 4, 28-Jan-2013	Markus Gwerder	© Siemens Switzerland Ltd 2010 Building Technologies / CPS Research

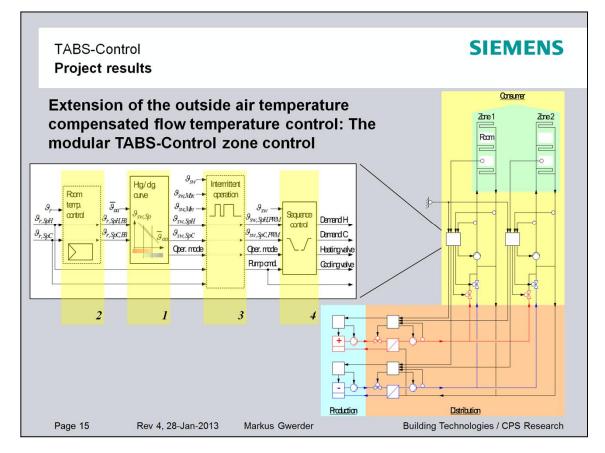
TABS-Co Introduct			SIEMENS
Difficulti	es in using TAE	35	
high there	mal coupling with T	ceiling/floor constr TABS to the rooms lowered ceilings, so	
An increa	ase in room temper	al comfort possible rature during the day demand on thermal	must be tolerated
Knowledg		during HVAC plannir	ng. Securing acceptance to the plant and its control (dynamic
The use of only function	tion at an unsatisfa	ntrol strategies, espe actory level.	ecially room temperature control n heating to cooling mode)
Page 7	Rev 4, 28-Jan-2013	Markus Gwerder	© Siemens Switzerland Ltd 2010 Building Technologies / CPS Research

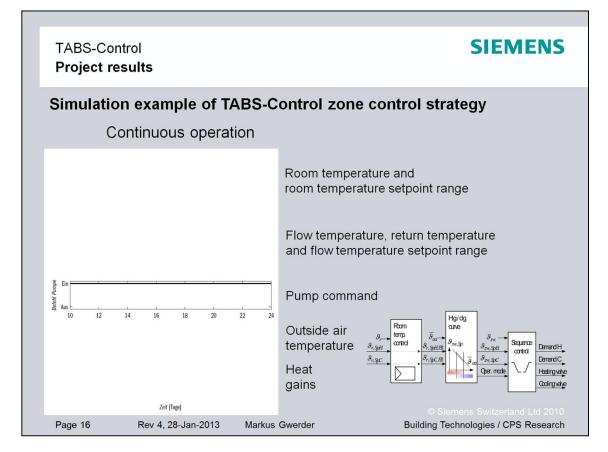
TABS-Control Project data and	project organization	SIEMENS
KTI Project num	ber 7046.1 IWS-IW	
TABS-Control, c	ontrol of thermally activated	building systems
Project partner University: Business:	Empa Building Technologies; Siemens Switzerland Ltd, Bu	•
Project begin: Project period:	May 1, 2004 43 months (until November 3	30, 2007)
Application amou Federal contributi		
Page 9 Rev 4, 28	-Jan-2013 Markus Gwerder	© Siemens Switzerland Ltd 2010 Building Technologies / CPS Research

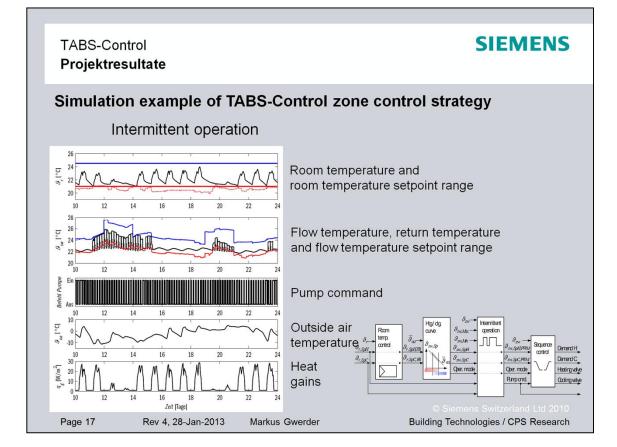
Text

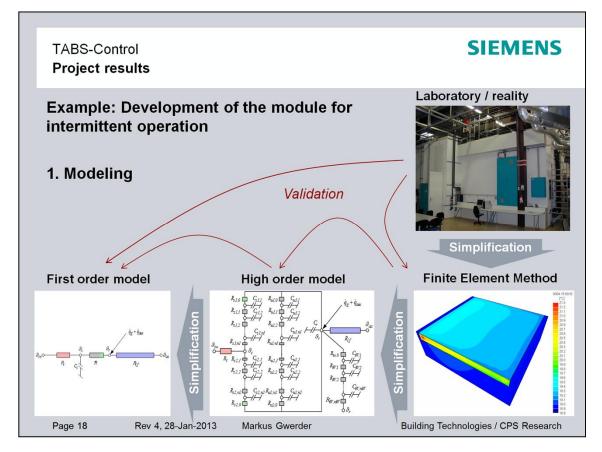


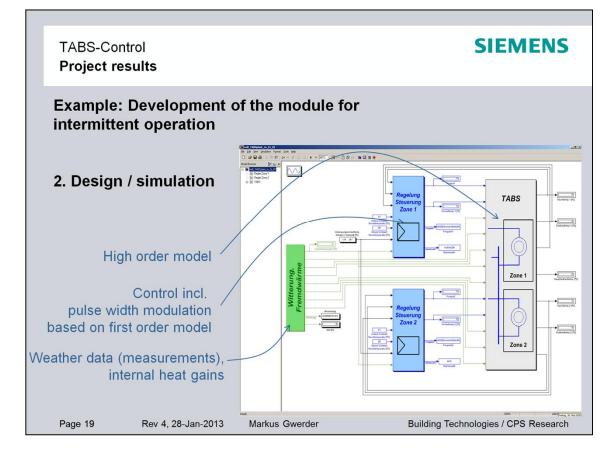

ZIG = Zentrum für Integrale Gebäudetechnik

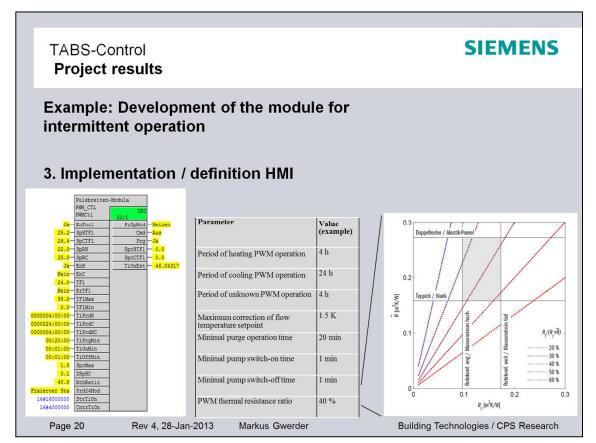


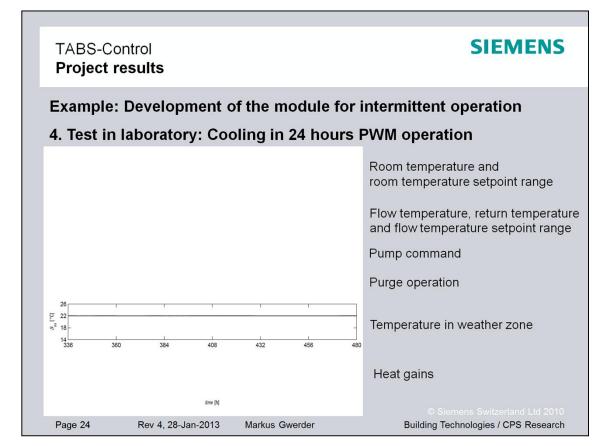


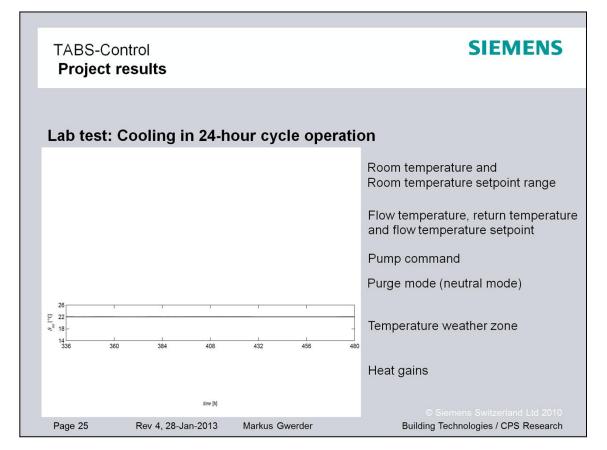

TABS-Control Project results	SIEMENS
 A selection of control strategies for zone control Implemented some of these strategies as standard solution Tests were conducted on these strategies in the Siemens I A new method to integrate TABS planning and its control Software planning tool TABSDesign Simulation programs and performance-bound calculation Guidelines on selecting topology of hydraulic switching A method for setting control during the initial operating phase A theory to control TABS ("UBB method") Manual on controlling TABS Various other publications and patent registration 	HVAC Lab
	© Siemens Switzerland Ltd 2010 ng Technologies / CPS Research

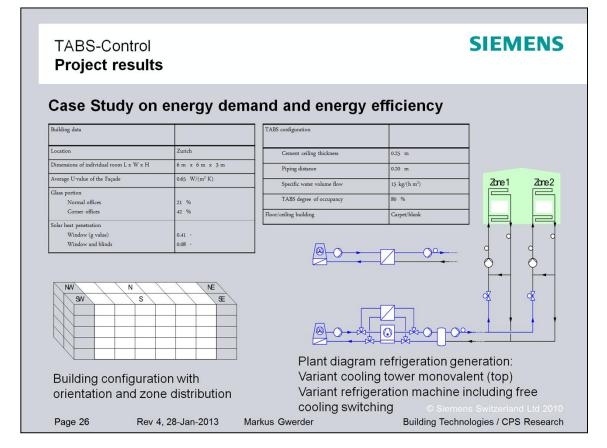


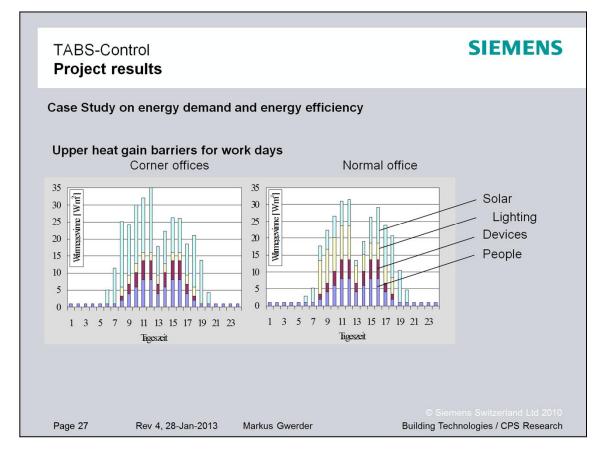


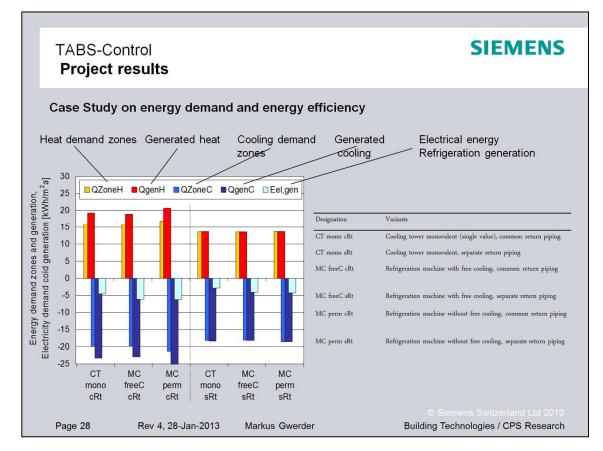


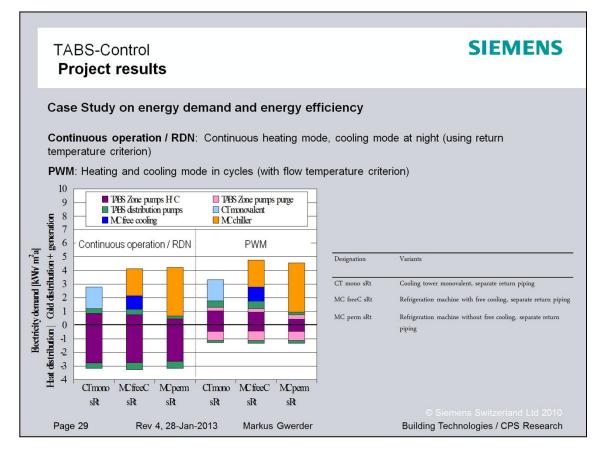


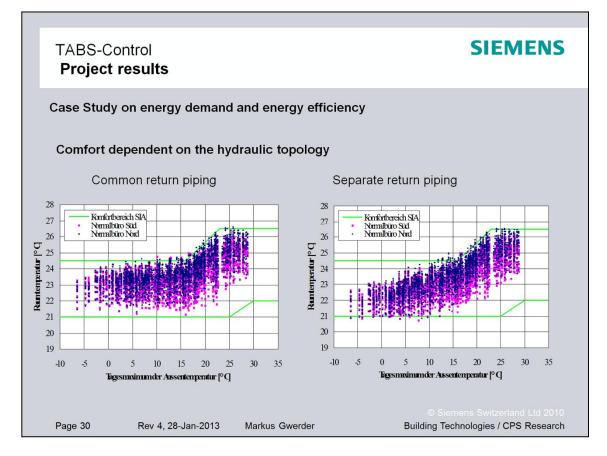


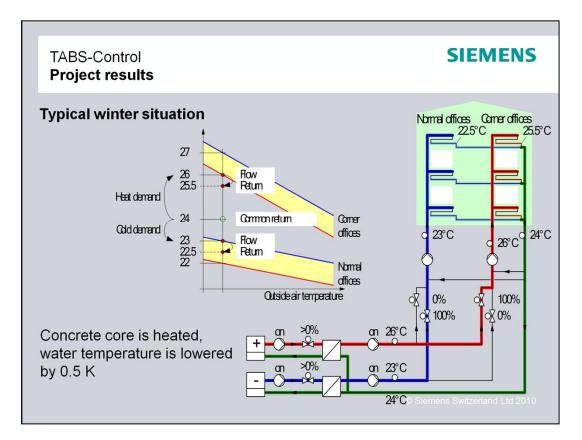

TABS-Co Project i			SIEMENS
	: Development c ent operation	of the module for	
4. Tests i	n laboratory		
Page 21	Rev 4, 28-Jan-2013	Markus Gwerder	© Siemens Switzerland Ltd 2010 Building Technologies / CPS Research

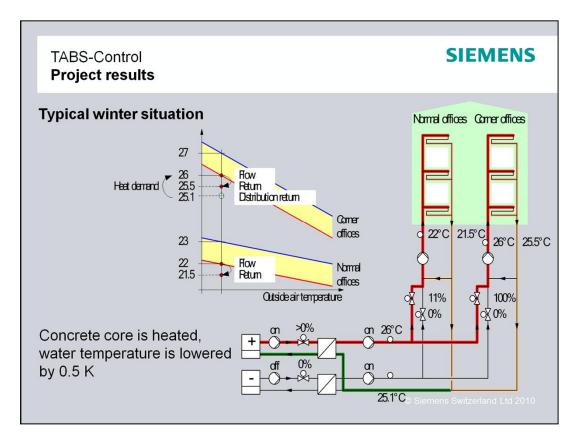


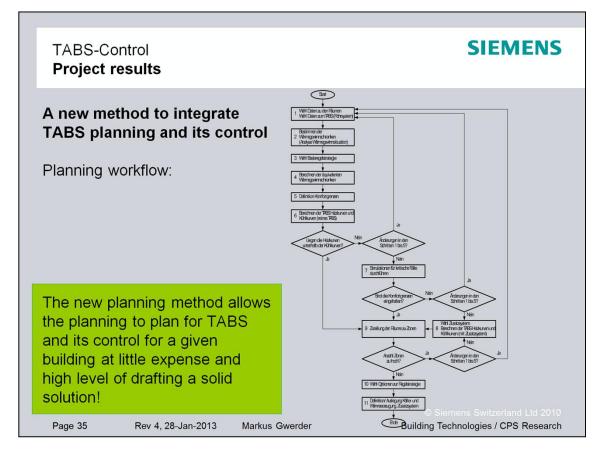




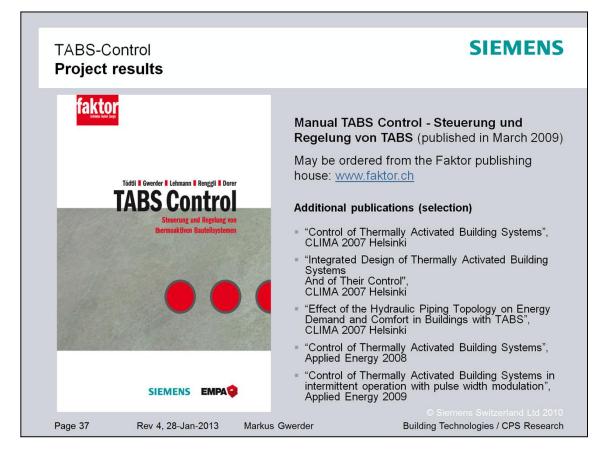



Text

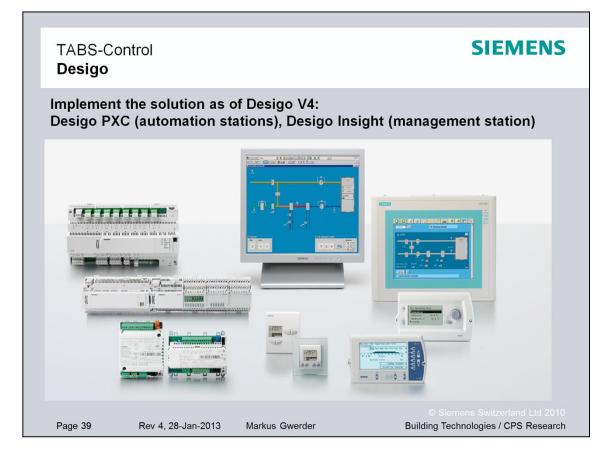



TABS-Contr Project rest			SIEMENS
Guidelines on The two most c		e topology for hydraulic sv ulic topologies	witching
Three distribution with		Three distribution lines with	
common zor piping		separate zone return piping	
Page 32	Rev 4, 28-Jan-2013	Markus Gwerder	© Siemens Switzerland Ltd 2010 Building Technologies / CPS Research

Winter situation, both zones are heated. No cooling. Why? – Because the zone returns are not mixed.



Winter situation, both zones are heated. No cooling. Why? – Because the zone returns are not mixed.



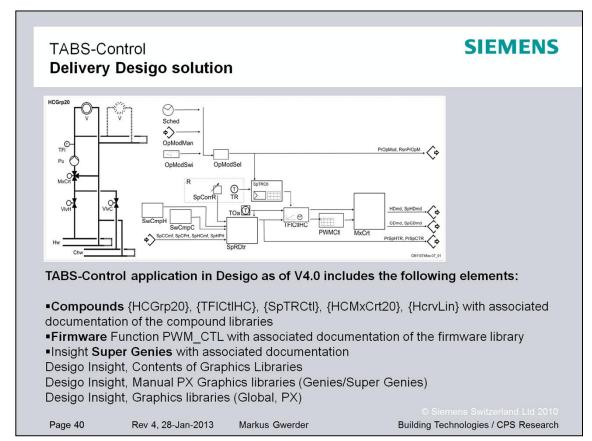
Text

Project re	sults		
	I TABSDesign (Windows X www.faktor.ch/?page=tabs	P)	
SIEMENS EMPAQ		Herebulk surve for all the VARA	
Busins Data Comparison of the second o			
Konselvent onnne Kourtenpestur Ausentenpesturtiononnae Hespera Ausentenpesturtiononnae Kolgena Ausentenpesturtiononnae Kolgena Hassokentrivolaterra, Erke Ausegungsussentenpestur Nassekentrivolaterra, Erke Ausegungsussentenpestur Nassekentrivolaterra, Erke Ausentenpestur			

AP1: Basics

AP1.1 Preparing a simulation tool (including lab trials to validate the model)

AP1.2 Evaluate existing simulation tools


AP1.3 Interaction of TABS with ventilation plants and supplemental systems (deleted)

AP1.4 Examinations on cycle mode

No planned at the start of the project, but quickly concluded:

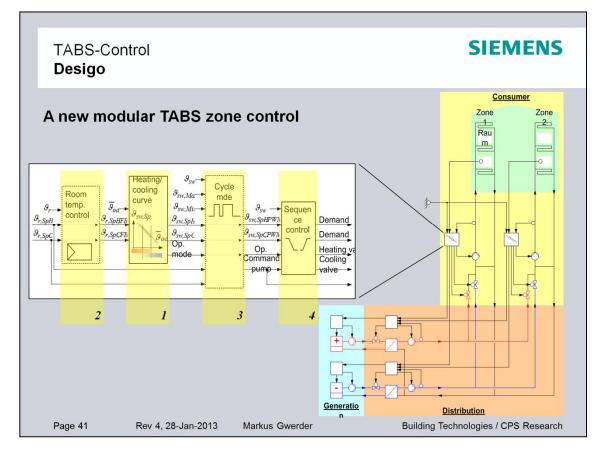
AP1.x Studies on proceeding in AP2

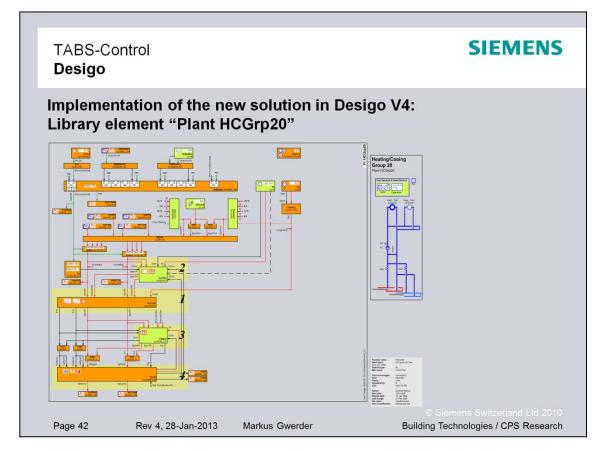
Various solution approaches developed. Ultimately decided in favor of the solution concept, "Unknown-but-bounded approach".

AP1: Basics

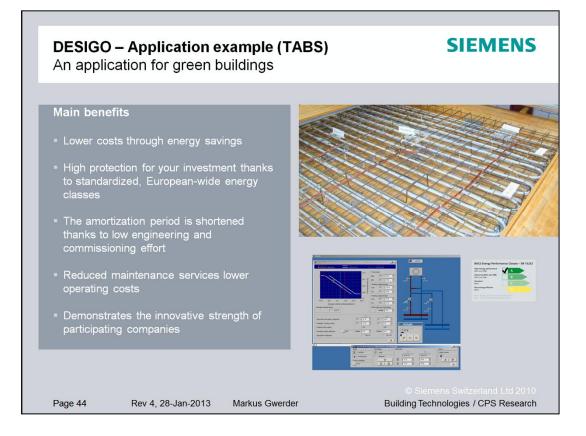
AP1.1 Preparing a simulation tool (including lab trials to validate the model)

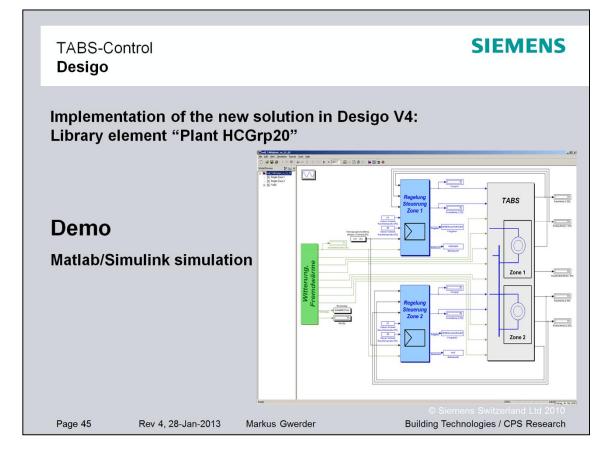
AP1.2 Evaluate existing simulation tools

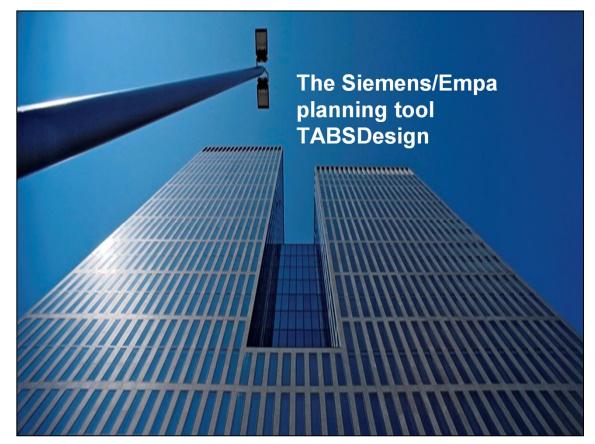

AP1.3 Interaction of TABS with ventilation plants and supplemental systems (deleted)

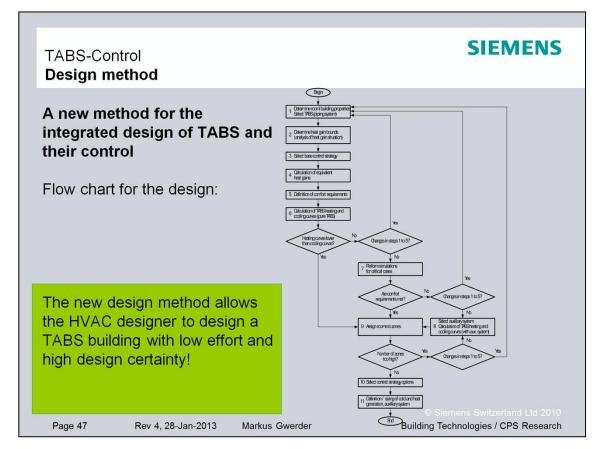

AP1.4 Examinations on cycle mode

No planned at the start of the project, but quickly concluded:

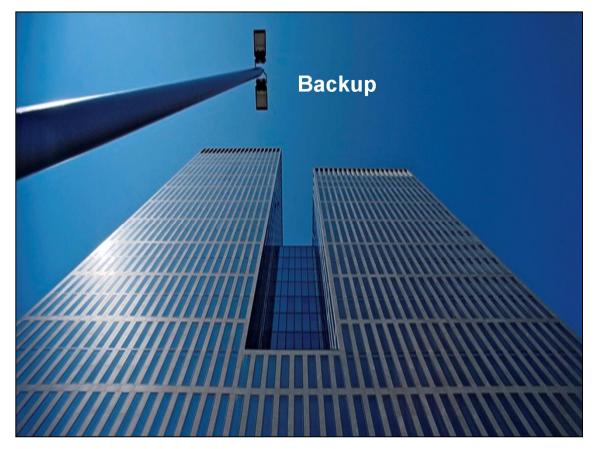

AP1.x Studies on proceeding in AP2

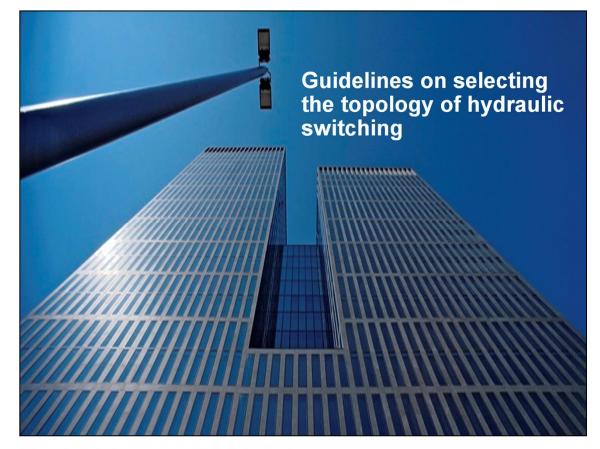

Various solution approaches developed. Ultimately decided in favor of the solution concept, "Unknown-but-bounded approach".

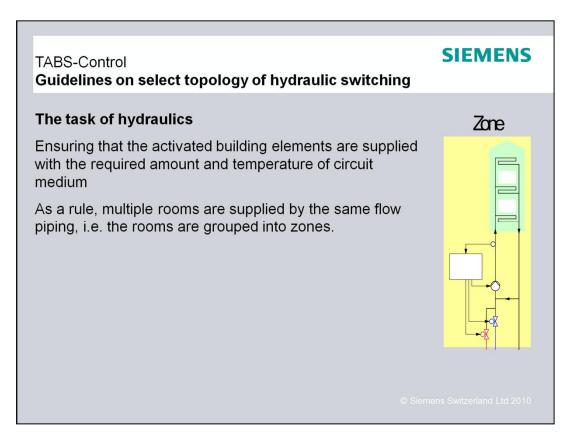


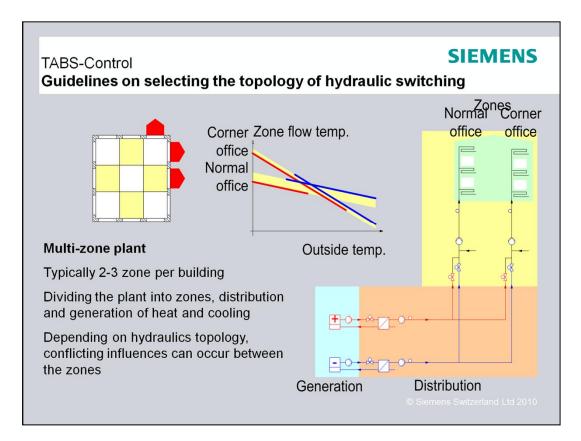


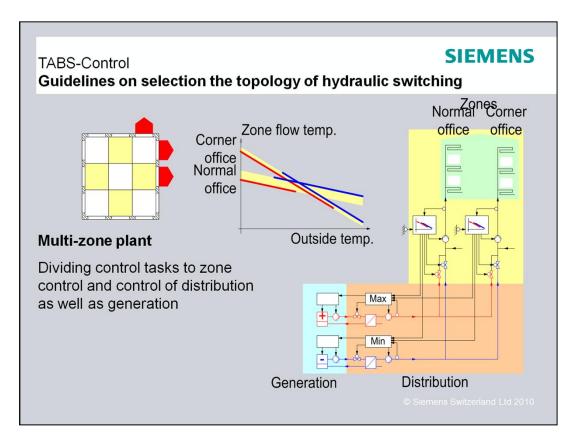
DESIGO – Application example (TABS) An application for green buildings	SIEMENS
Innovative unique product to reduce energy consumption with the following benefits:	
 Control strategy as an integrated component for a TABS building 	
 Simple and easy-to-understand control strategy 	1 1
User-friendly operation	Managementing support En In IN </td
Year round fully automated operation	
Meets comfort requirements	Visualization in DESIGO INSIGHT
Low energy demand (e.g. PWM operation)	
Efficient engineering and commissioning	
Page 43 Rev 4, 28-Jan-2013 Markus Gwerder	© Siemens Switzerland Ltd 2010 Building Technologies / CPS Research



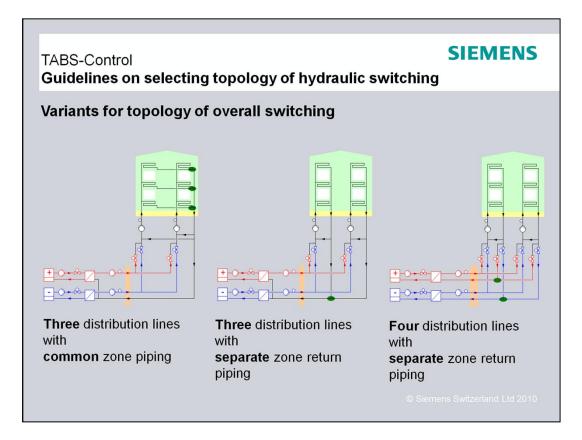



Design me	ethod	
Design tool	TABSDesign	
Download: w	ww.faktor.ch/?page=tabs	
<text></text>		

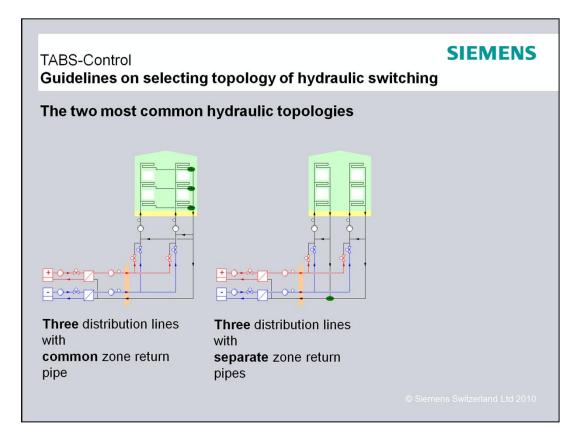



Common zone return pipe topology: is simple and inexpensive Separate zone return pipes topology: is a bit more complex and expensive

Both topologies allow each zone to decide about heating or cooling needs.

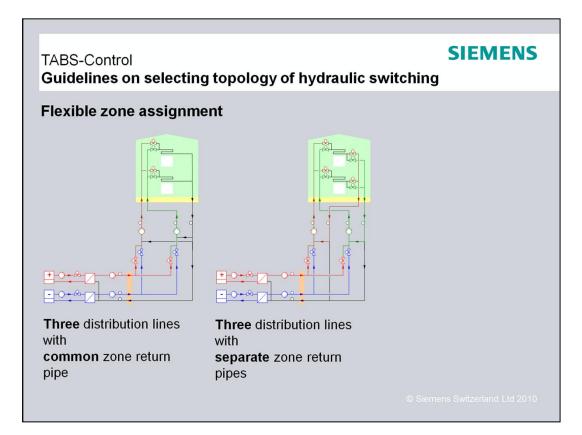

Common zone return pipe topology: is simple and inexpensive Separate zone return pipes topology: is a bit more complex and expensive

Both topologies allow each zone to decide about heating or cooling needs.

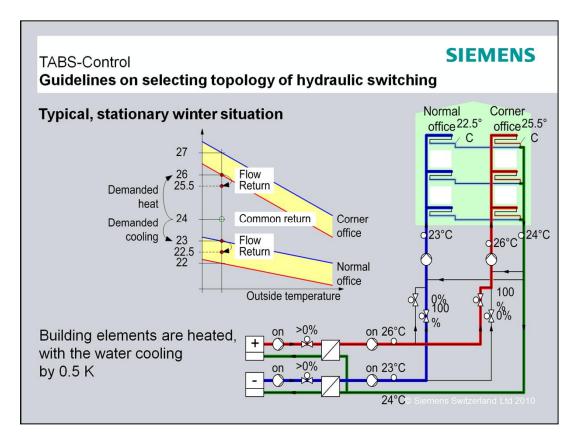

Common zone return pipe topology: is simple and inexpensive Separate zone return pipes topology: is a bit more complex and expensive

Both topologies allow each zone to decide about heating or cooling needs.

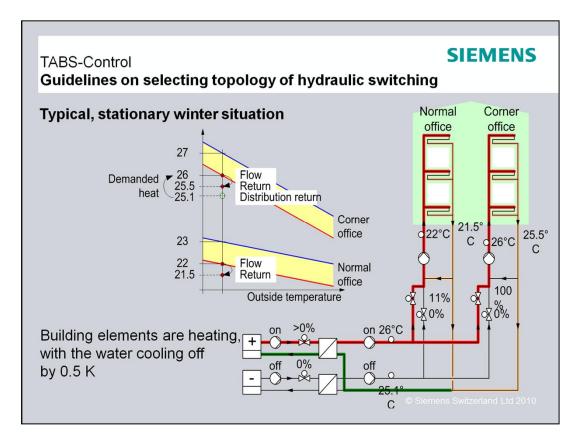
Common zone return pipe topology: is simple and inexpensive Separate zone return pipes topology: is a bit more complex and expensive


Both topologies allow each zone to decide about heating or cooling needs. Only separate zone return topology allows a simultaneous idle operation mode in all zones.

Common zone return pipe topology: is simple and inexpensive Separate zone return pipes topology: is a bit more complex and expensive


Both topologies allow each zone to decide about heating or cooling needs. Only separate zone return topology allows a simultaneous idle operation mode in

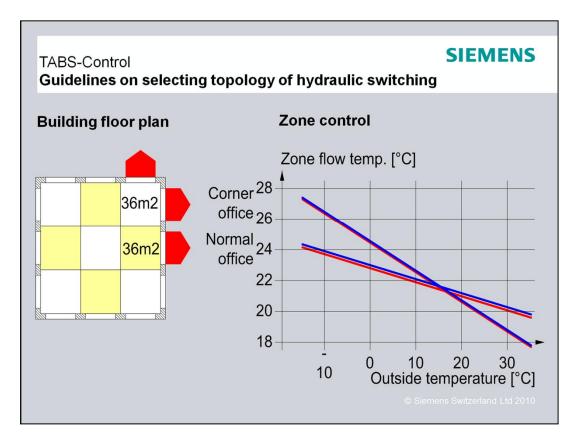
all zones.



Common zone return pipe topology: is simple and inexpensive Separate zone return pipes topology: is a bit more complex and expensive

Both topologies allow each zone to decide about heating or cooling needs.

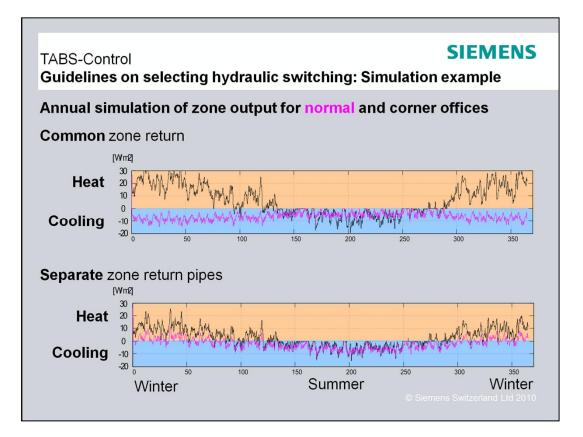
Winter situation, both zones are heated. No cooling. Why? – Because the zone returns are not mixed.



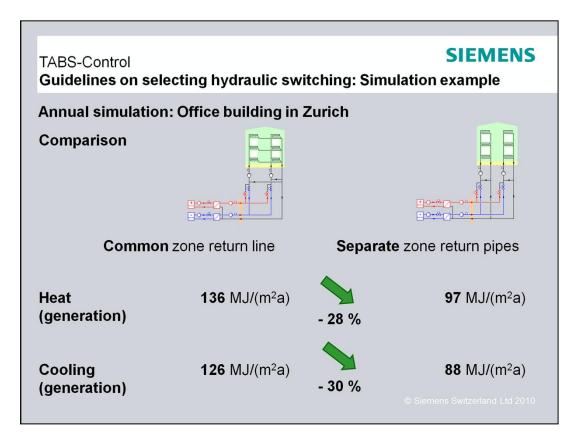
Winter situation, both zones are heated. No cooling. Why? – Because the zone returns are not mixed.

TABS-Control SIEMENS Guidelines on selecting topology of hydraulic switching					
Stationary load situations: Mixing gains and losses Building elements		Common zone return pipe		Separate zone return pipes	
Normal office Corner office	Heated Heated	Losses	Neutral	Neutral	Neutral
Normal office Corner office	Cooled Heated	Losses	Gains	Losses/ gains	Gains
Normal office Corner office	-	Losses	Neutral	Neutral	Neutral
Normal office Corner office	Heated Cooled	Losses	Gains	Gains	Gains
Normal office Corner office	Cooled Cooled	Losses	Neutral	Neutral © Siemens Switze	Neutral

Common zone return pipe topology: is simple and inexpensive Separate zone return pipes topology: is a bit more complex and expensive


Both topologies allow each zone to decide about heating or cooling needs.

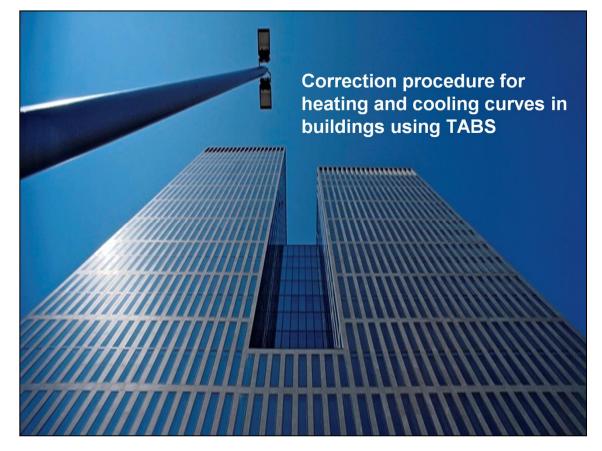
Common zone return pipe topology: is simple and inexpensive Separate zone return pipes topology: is a bit more complex and expensive

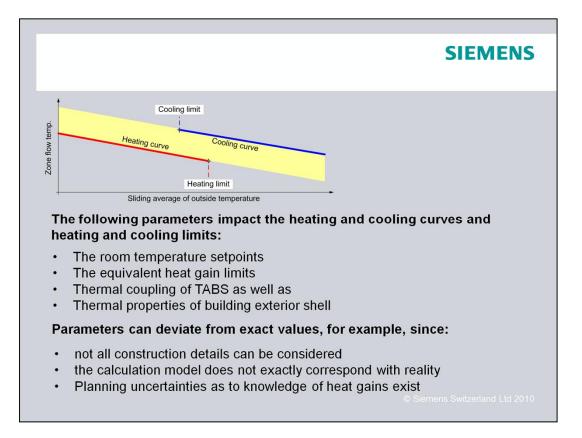

Both topologies allow each zone to decide about heating or cooling needs. Only separate zone return topology allows a simultaneous idle operation mode in

all zones.

Common zone return pipe topology: is simple and inexpensive Separate zone return pipes topology: is a bit more complex and expensive

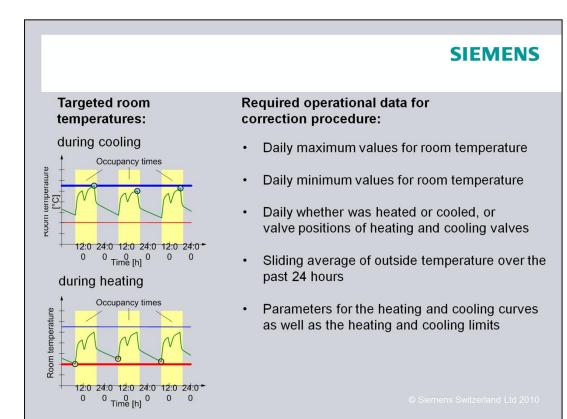
Both topologies allow each zone to decide about heating or cooling needs.

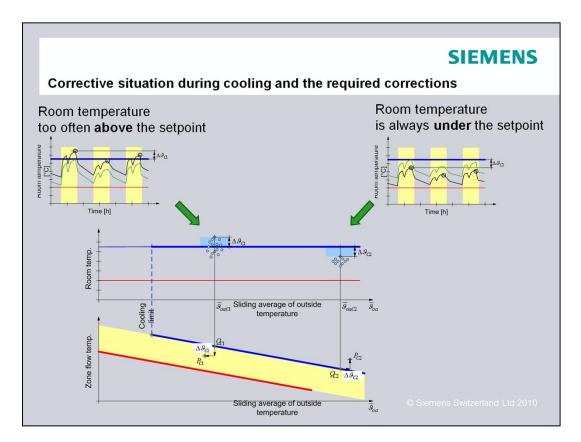

Summary

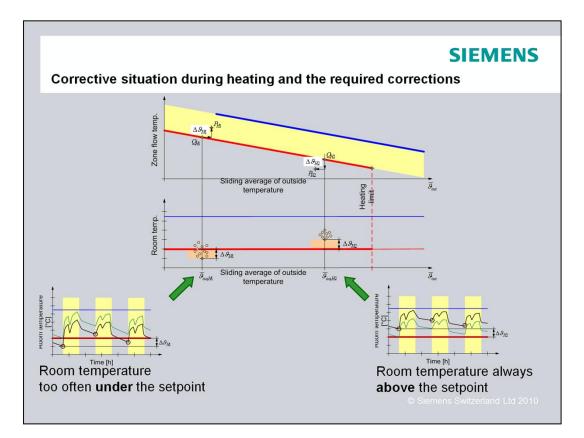

• The **impact of hydraulic switching** can have tremendous impact on energy demand for some plants.

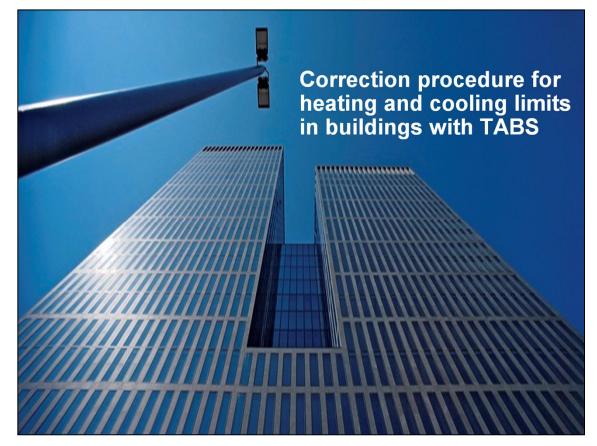
• Which hydraulic switching is suitable, depends on the building and heat gains

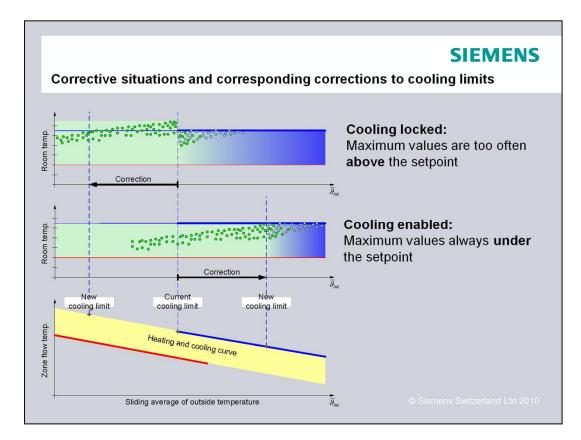
•A more detailed analysis is required to determine for a concrete case whether separate zone returns would be more appropriate:


- Based on the information in the manual
- Or in critical cases: Through the use of simulations






Common zone return pipe topology: is simple and inexpensive Separate zone return pipes topology: is a bit more complex and expensive


Both topologies allow each zone to decide about heating or cooling needs.

